cho a,b,c,d thỏa mãn a+b=c+d ; a^2+b^2=c^2+d^2. Chứng minh a^2010+b^2010=c^2010+d^2010
nhờ các bạn giải giùm. Mình cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b = b/c = c/d = (a+b+c)/(b+c+d)
=> (a+b+c/b+c+d)^6054 = (a/b)^6054
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Đặt A/B=C/D=k
=>A=k*B; C=D*k
A/B=k*B/B=k
\(\dfrac{A+C}{B+D}=\dfrac{k\cdot B+k\cdot D}{B+D}=k\)
=>\(\dfrac{A}{B}=\dfrac{A+C}{B+D}\)
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
Ta có:
\(a^2+b^2=c^2+d^2\)
nên \(a^2-c^2=d^2-b^2\)
\(\Leftrightarrow\) \(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\) \(\left(1\right)\)
Lại có: \(a+b=c+d\) \(\left(2\right)\)
\(\Rightarrow\) \(a-c=d-b\)
+) Nếu \(a-c=0\) \(\Rightarrow\) \(a=c\) và \(d-b=0\) \(\Rightarrow\) \(d=b\) thì biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)
luôn đúng với mọi \(a;b;c;d\)
+) Nếu \(a-c\ne0\) \(\Rightarrow\) \(a\ne c\) và \(d-b\ne0\) \(\Rightarrow\) \(d\ne b\) thì khi đó biểu thức \(\left(1\right)\) trở thành:
\(a+c=b+d\) \(\left(3\right)\)
Cộng \(\left(2\right)\) và \(\left(3\right)\) vế theo vế, ta được:
\(2a+b+c=2d+b+c\)
\(\Rightarrow\) \(2a=2d\)
\(\Rightarrow\) \(a=d\)
Từ đây, ta dễ dàng suy ra được \(b=c\) (theo \(\left(2\right);\left(3\right)\) )
Vì \(a=d\) và \(b=c\) nên do đó, biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\) luôn đúng với mọi \(a;b;c;d\)
Vậy, ...