Cho phương trình a.z² +b.z+c=0 với a khác 0; a,b,c thuộc R không có nghiệm thực. Gọi z1, z2 là các nghiệm phức của phương trình và |(z1)²|+|(z2)²|=10. Tính z1.z2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{bzx-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bzx}{cz}=\frac{bzx-cxy+cxy-ayz+ayz-bzx}{ax+by+cz}=0\)
=>bz-cy=0;cx-az=0;ay-bx=0
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
Suy ra \(\left\{{}\begin{matrix}bz=cy\Leftrightarrow\dfrac{y}{b}=\dfrac{z}{c}\\cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\\ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)
p/s: đã sửa đề
Thay `b=5a+2c` vào `ax^2+bx+c=0`:
`ax^2+(5a+2c)x+c=0`
`=>Delta=(5a+2c)^2-4ac`
`=25a^2+20ac+4c^2-4ac`
`=25a^2+16ac+4c^2`
`=9a^2+(16a^2+16ac+4c^2)`
`=9a^2+(4a+2c)^2>=0`
`=>` ĐPCM
Đặt \(z_1=x+yi\Rightarrow z_2=x-yi\)
\(\Rightarrow z_1z_2=x^2+y^2\)
\(\left|z_1^2\right|+\left|z_2^2\right|=10\Leftrightarrow\left|\left(x+yi\right)^2\right|+\left|\left(x-yi\right)^2\right|=10\)
\(\Leftrightarrow\left|x^2-y^2+2xyi\right|+\left|x^2-y^2-2xyi\right|=10\)
\(\Leftrightarrow\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}+\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}=10\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+4x^2y^2=25\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=25\)
\(\Leftrightarrow x^2+y^2=5\)