Cho a, b thỏa mãn: a+b\(\le\)2; a, b>0.
Tìm GTLN của P=\(\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\in\left[-2;5\right]\Rightarrow\left(a+2\right)\left(a-5\right)\le0\)
\(\Leftrightarrow a^2\le3a+10\)
Tương tự: \(b^2\le3b+10\Rightarrow2b^2\le6b+20\)
\(c^2\le3c+10\Rightarrow3c^2\le9c+30\)
Cộng vế:
\(a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le66\) (đpcm)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)
Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)
Lại có: \(1\le a\le2,1\le b\le2\)
\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)
\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)
Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)
Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)
\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)
xcnhbhjdfb chjb
jckxb nxcnmrehjvsbn
cbjdbfvcm bjkdfbgfmjn
\(2a+b=2\Rightarrow b=2-2a\)
\(ab=a\left(2-2a\right)=-2a^2+2a=-2\left(a-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};1\right)\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
Ta có:
\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}=\sqrt{a}.\sqrt{b+1}+\sqrt{b}.\sqrt{a+1}\)
Áp dụng bđt \(B.C.S\) lần lượt cho hai bộ số thực gồm \(\left(\sqrt{a};\sqrt{b}\right)\) và \(\left(\sqrt{b+1};\sqrt{a+1}\right)\) , ta được:
\(P\le\sqrt{\left(a+b\right)\left[\left(a+1\right)+\left(b+1\right)\right]}\le\sqrt{2\left(2+2\right)}=2\sqrt{2}\) (do \(a+b\le2\) )
Đẳng thức xảy ra khi \(a=b=1\)
Bunhia là ra thôi