cho hình thang ABCD(AB//CD,AB<CD).gọi o là giao điểm của AD và BC,gọi E là giao điểm của AC và BD
chứng minh;
a)ΔAOB là tam giác cân tại o
b)ΔABD= ΔBAC
c)EC=ED
ANH/CHỊ GIÚP E GIẢI BÀI NÀY VS CHIỀU E PK NỘP R!
E CẢM ƠN Ạ 0ω0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K
Tính được SABCD = 180cm2
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
Bổ sung đề : ABCD là hthang cân
a) Ta có:
ABCD là hthang cân
=> \(\widehat{BAD}=\widehat{ABC}\)
\(\Rightarrow180^0-\widehat{BAD}=180^0-\widehat{ABC}\)
\(\Rightarrow\widehat{OAB}=\widehat{OBA}\)
=> Tam giác AOB cân tại O
b) Xét ΔABD và ΔBAC có:
AD=BC(ABCD là hthang cân)
\(\widehat{BAD}=\widehat{ABC}\)(ABCD là hthang cân)
AB chung
=> ΔABD=ΔBAC(c.g.c)
c) Ta có: ΔABD=ΔBAC(cmt)
=> \(\widehat{EDC}=\widehat{ECD}\)
=> Tam giác EDC cân tại E
=>EC=ED
e cảm ơn nhiều lắm ạ❤