So sánh E và W biết rằng : E=\(\frac{500^{40}+1}{500^{41}+1}\); W= \(\frac{500^{39}+1}{500^{40}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{23^{41}+1}{23^{42}+1}\)
Vì B < 1
\(\Rightarrow B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23(23^{40}+1)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
P/s: Hoq chắc
ta có
\(B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23\left(23^{40}+1\right)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
\(\Rightarrow B< A\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
Ta có : \(\left(-\frac{1}{5}\right)^{300}=\left(-\frac{1}{5}\right)^{3.100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(-\frac{1}{3}\right)^{5.100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}\)
Mà \(125< 243\Rightarrow\frac{1}{125}>\frac{1}{243}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)
\(=>\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
a) \(49^{12}\)và \(5^{40}\)
\(49^{12}=\left(49^3\right)^4=\left(\left(7^2\right)^3\right)^4=\left(7^6\right)^4\)
\(5^{40}=\left(5^{10}\right)^4\)
\(7^6=\left(7^3\right)^2>\left(5^5\right)^2\)vì \(7^2\cdot7>5^3\cdot5^2\)
\(\Rightarrow49^{12}< 5^{40}\)
\(\left(-\frac{1}{16}\right)^{100}=\left(-\left(\frac{-1}{2}\right)^4\right)^{100}\)
\(=\left(-\frac{1}{2}\right)^{400}< \left(-\frac{1}{2}\right)^{500}\)
Ta thấy A và B đề là số có 6 chữ số vậy:
Tổng của A gồm có a trăm nghìn, b chục nghìn, c nghìn, 6 trăm, 5 chục, 1đơn vị
Tổng của B gồm có a trăm nghìn, b chục nghìn, c nghìn, 5 trăm, 6 chục, 1đơn vị
Vì 600 > 500 nên A < B
So sánh \(\left(-\frac{1}{16}\right)^{100}\)và\(\left(-1\right)^{500}\)
\(\left(-\frac{1}{16}\right)^{100}\)
\(\left(-1\right)^{500}=\left(-\frac{16}{16}\right)^{500}\)
Vì \(\left(-\frac{1}{16}\right)<\left(-\frac{16}{16}\right)\)và \(100<500\)
Nên \(\left(-\frac{1}{16}\right)^{100}<\left(-1\right)^{500}\)
Ta có : 333^444=(3.111)^444=3^444.111^444
444^333=(4.111)^333=4^333.111^333
Ta lại có : 3^444=(3^4)^111=81^111
4^333=(4^3)^111=64^111
vì 3^444>4^333
mặt khác 111^333<111^444
suy ra 4^333.111^333<3^444.111^444
vậy 333^444>444^333
Ta có :
\(\frac{1^{500}}{2}=\frac{1}{2}\)
\(\frac{1^{300}}{3}=\frac{1}{3}\)
Mà 3>2
\(\Rightarrow\frac{1}{2}>\frac{1}{3}\)
Hay \(\frac{1^{500}}{2}>\frac{1^{300}}{3}\)
Ta có:
\(E=\frac{500^{40}+1}{500^{41}+1}\Leftrightarrow10E=\frac{500^{41}+10}{500^{41}+1}=1+\frac{9}{500^{41}+1}\)
\(W=\frac{500^{39}+1}{500^{40}+1}\Leftrightarrow10W=\frac{500^{40}+10}{500^{40}+1}=1+\frac{9}{500^{40}+1}\)
Hay ta đang so sánh: \(E=\frac{9}{500^{41}};W=\frac{9}{500^{40}}\)
Vì \(500^{41}>500^{40}\)nên \(\frac{9}{500^{41}}< \frac{9}{500^{40}}\)hay \(\frac{500^{40}+1}{500^{41}+1}< \frac{500^{39}+1}{500^{40}+1}\).
Vậy \(E< W\)