Hình chóp S.ABC có đáy là tam giác đều có A B = B C = 2 a ; S A ⊥ ( A B C ) và S A = a 3 Thể tích hình chóp S.ABC bằng
A. a 3
B. a 3 2 12
C. a 3 4
D. a 3 3 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm AB. Có
Ta có
Khi đó thể tích khối chóp S.ABC là
Chọn đáp án A.
Chọn A
Gọi H là trung điểm AB, có
Khi đó thể tích khối chóp S>ABC là
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Đáp án C
Gọi I là trung điểm của A B ⇒ S I ⊥ A B C
Ta có S I = a 2 − a 2 2 = a 3 2 ; S A B C = 1 2 a 2 sin 60 ° = a 2 3 4
Thể tích của khối chóp S . A B C là:
V = 1 3 S I . S A B C = 1 3 . a 3 2 . a 2 3 4 = a 3 8
Đáp án A
Gọi M là trung điểm B C ⇒ A M = 2 a 3 2 = 3 a . d t a b c = 1 2 A M . B C = 1 2 a 3 . 2 a = 3 a 2
Vậy V S . A B C = 1 3 S A . d t A B C = 1 3 a 3 . 3 a 2 = a 3