Cho tam giác ABC cân tại A nội tiếp ( O ; R ). Vẽ đường kính AOD. M là một điểm trên AC ( M khác A và C ). AM cắt đường thẳng BC tại E a) Chứng minh AM.AE = AC2 b) DM cắt BC tại I. AI cắt đường tròn (O) tại N. Chứng minh D, N, E thẳng hàng c) Cho góc BAC = 45 độ. Tính theo R chu vi hình phẳng giới hạn bởi AB, AC và góc BDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ Kéo dài BI cắt (O) tại E
Ta có \(B\widehat{I}D=\frac{1}{2}\left(\widebat{BD}+\widehat{AE}\right)\)( góc có đỉnh bên trong đường tròn (O))
Mà \(\widebat{BD}=\widebat{DC}\); \(\widebat{AE}=\widebat{EC}\)
Nên\(B\widehat{I}D=\frac{1}{2}\left(\widebat{DC}+\widebat{EC}\right)=\frac{1}{2}\widebat{ED}\)
Mặc khác \(D\widehat{B}I=\frac{1}{2}\widebat{ED}\)( tự CM nha )
=> \(B\widehat{I}D=D\widebat{B}I\)
=> tam giác BID cân
Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
Do đó: BM=CM
hay ΔBMC cân tại M
chị ơi em chưa học lí thuyết chắn cung chị, phải giải chi tiết cơ @@
a: Xét tứ giác HMCN co
góc HMC+góc HNC=180 đô
=>HMCN là tứ giác nội tiếp
b: góc CBE=1/2*sđ cung CE
góc CAD=1/2*sđ cung CD
mà góc CBE=góc CAD
nên CE=CD
c: góc BHD=góc ACB=1/2*sđ cung AB=góc BDH
=>ΔBHD cân tại B
Đáp án A
Vì tam giác ABC cân tại A nên AB = AC
Suy ra: hai dây AB và AC cách đều tâm.
Ta chưa thể so sánh độ dài AB và BC; AC và BC nên ta chưa thể kết luận dây nào gần tâm hơn, dây nào xa tâm hơn hay các dây cách đều tâm.