Cho ΔABC đều nội tiếp \(\left(O;R\right)\)
Gọi M là điểm bất kỳ thuộc cung BC
a. Cm MA = MB \(+\) MC
b. Gọi D là giao điểm của MA và MB
Cm \(\dfrac{MD}{MB}+\dfrac{MD}{MC}=1\)
c. Kẻ AH ⊥ BC , AH cắt \(\left(O;R\right)\) tại K
Cm AM.AD = AH.AK
d. Tính tổng \(MA^2+MB^2+MC^2\) theo R