K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó; ΔABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=R\sqrt{3}\)

b: Xét ΔDOB có

BA là đường trung tuyến

BA=DO/2

Do đó: ΔDOB vuông tại B

hay DB là tiếp tuyến của (O)

13 tháng 12 2023

a: Xét ΔOBM vuông tại B có BI là đường cao

nên \(OI\cdot OM=OB^2\)

=>\(OM\cdot2=5^2=25\)

=>OM=25/2=12,5(cm)

Ta có: ΔBIO vuông tại I

=>\(IB^2+IO^2=BO^2\)

=>\(IB^2+2^2=5^2\)

=>\(IB^2=21\)

=>\(IB=\sqrt{21}\left(cm\right)\)

Ta có: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC và OI là phân giác của góc BOC

Ta có: I là trung điểm của BC

=>\(BC=2\cdot BI=2\sqrt{21}\left(cm\right)\)

c: Xét ΔOBM và ΔOCM có

OB=OC

\(\widehat{BOM}=\widehat{COM}\)

OM chung

Do đó: ΔOBM=ΔOCM

=>\(\widehat{OBM}=\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

13 tháng 10 2021

a: Xét ΔOAB vuông tại B có 

\(OA^2=OB^2+AB^2\)

hay AB=8(cm)

17 tháng 5 2017

a, Tính được OB=10cm

b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)

a: Xét (O;R) có

OA là bán kính

O'A vuông góp với OA

Do đó: O'A là tiếp tuyến của (O)

b: \(OO'=\sqrt{12^2+5^2}=13\left(cm\right)\)

AH=5*12/13=60/13(cm)

=>AB=120/13(cm)

a: Xét (O;R) có

OA là bán kính

O'A vuông góp với OA

Do đó: O'A là tiếp tuyến của (O)

b: \(OO'=\sqrt{12^2+5^2}=13\left(cm\right)\)

AH=5*12/13=60/13(cm)

=>AB=120/13(cm)

a: Ta có: ΔOAC cân tại O

mà OB là đường cao

nên OB là phân giác của góc AOC

Xét ΔOAB và ΔOCB có

OA=OC

\(\widehat{AOB}=\widehat{COB}\)

OB chung

Do đó: ΔOAB=ΔOCB

=>\(\widehat{OAB}=\widehat{OCB}=90^0\)

=>BC là tiếp tuyến của (O)

b: Ta có: ΔABO vuông tại A

=>\(BO^2=BA^2+AO^2\)

=>\(BO^2=R^2+R^2=2R^2\)

=>\(BO=R\sqrt{2}\)

Xét ΔBOA vuông tại A có AH là đường cao

nên \(BH\cdot BO=BA^2\)

=>\(BH\cdot R\sqrt{2}=R^2\)

=>\(BH=\dfrac{R^2}{R\sqrt{2}}=\dfrac{R}{\sqrt{2}}\)

Xét ΔABO vuông tại A có AO=AB

nên ΔABO vuông cân tại A

=>\(\widehat{ABO}=\widehat{AOB}=45^0\)

Xét ΔAOI có \(cosAOI=\dfrac{OA^2+OI^2-AI^2}{2\cdot OA\cdot OI}\)

=>\(\dfrac{R^2+R^2-AI^2}{2\cdot R\cdot R}=cos45=\dfrac{\sqrt{2}}{2}\)

=>\(2R^2-AI^2=2R^2\cdot\dfrac{\sqrt{2}}{2}=R^2\cdot\sqrt{2}\)

=>\(AI^2=2R^2-R^2\cdot\sqrt{2}\)

=>\(AI^2=R^2\left(2-\sqrt{2}\right)\)

=>\(AI=R\cdot\sqrt{2-\sqrt{2}}\)

Xét ΔOHA vuông tại H có \(cosHOA=\dfrac{HO}{OA}\)

=>\(\dfrac{HO}{R}=cos45=\dfrac{\sqrt{2}}{2}\)

=>\(HO=R\cdot\dfrac{\sqrt{2}}{2}\)

OH+HI=OI

=>\(HI+\dfrac{R\sqrt{2}}{2}=R\)

=>\(HI=R-\dfrac{R\sqrt{2}}{2}=R\left(1-\dfrac{\sqrt{2}}{2}\right)=\dfrac{2-\sqrt{2}}{2}\cdot R\)