K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

b: Xét ΔABE vuông tại E và ΔHCE vuông tại E có 

\(\widehat{ABE}=\widehat{HCE}\)

Do đó: ΔABE\(\sim\)ΔHCE

Suy ra: AB/HC=BE/CE

hay \(AB\cdot CE=BE\cdot HC\)

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

31 tháng 3 2018

sai đề câu a thì phải bn ak

11 tháng 3 2022

Do BM là tiếp tuyến của đường tròn nên \widehat{OBM}=90^o
o

Xét đường tròn (O) có AD là một dây cung. Lại có E là trung điểm AD nên theo tính chất của đường kính và dây cung, ta có OE\perp ADOEAD hay \widehat{OEM}=90^oOEM=90o.

Xét tứ giác OEBM có \widehat{OBM}=\widehat{OEM}=90^oOBM=OEM=90o, chúng lại là hai góc kề nhau nên OEBM là tứ giác nội tiếp.

 
               
 
11 tháng 3 2022

Cho tam giác ABCABC có ba góc nhọn nội tiếp đường tròn tâm OO (AB < AC)(AB<AC). Hai tiếp tuyến tại BB và CC cắt nhau tại MMAMAM cắt đường tròn (O)(O) tại điểm thứ hai DD. Gọi EE là trung điểm đoạn ADAD. Chứng minh OEBMOEBM là tứ giác nội tiếp.

theo bai ta co E là trung điểm đoạn ADAD

ma AD la mot day cung thuoc (O)

=> OE vuong goc voi AD 

hay goc OEM = 90 (1)

Mat khac, BM vuong goc voi OB tai B (gt)

hay goc OBM= 90 (2)

Tu (1) va (2) suy ra tu giac OEBM noi tiep

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

a: góc ACM=1/2*sđ cung AM=90 độ

b: góc ADB=góc AEB=90 độ

=>ABDE nội tiếp

a) Xét tứ giác KEDC có 

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối

\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm của đường tròn này là trung điểm của KC

6 tháng 5 2020

Câu hỏi là gì bạn?