Cho tam giác ABC nội tiếp (O;R). Gọi H là trực tâm của tam giác.Gọi O1, O2, O3 lần lượt là tâm 3 đường tròn trên. cmr: tam giác ABC = tam giác O1O2O3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.
Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)
Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)
Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)
Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'
=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp
Áp dụng phương tích đường tròn có: FK.FC=FD.FL' (1)
Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF
=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g) => FA2 = FK.FC (2)
Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)
=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2
Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp
Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L
Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2
Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).
Ta có: B O C ^ = 2 B A C ^ , C O A ^ = 2 C B A ^ , A O B ^ = 2 A C B ^
( góc ở tâm gấp 2 lần số đo góc nội tiếp cùng chắn 1 cung )
S = S O A B + S O B C + S O C A
= 1 2 O A . O B . sin A O B ^ + 1 2 O B . O C . sin B O C ^ + 1 2 O C . O A . sin C O A ^
S = 1 2 R 2 sin 2 A + sin 2 B + sin 2 C .
ĐÁP ÁN A
Vì DI = DB (gt) nên tam giác DIB cân tại D
Suy ra: \(\widehat{DIB}=\widehat{DBI}\) => \(\widehat{BAD}+\widehat{ABI}=\widehat{IBC}+\widehat{DBC}\)
Mà AD là phân giác góc BAC nên cung BD = cung CD
Ta có: BAD là góc nội tiếp chắn cung BD
DBC là góc nội tiếp chắn cung CD
Do đó: \(\widehat{BAD}=\widehat{DBC}\Rightarrow\widehat{ABI}=\widehat{IBC}\)
=> BI là phân giác của góc ABC
Lại có: AI là phân giác góc BAC
Vậy I là tâm đường tròn nội tiếp tam giác ABC (Đpcm)
Bổ sung: ΔABC cân tại A
ΔABC cân tại A
=>AO đi qua trug diểm I của EF
Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)
Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB
=>OE//IK//GB
ΔABG có IK//GB
nên IK/BG=AI/AG
=>IK=AI*BG/AG
ΔABH có EI//BH
ΔABE có OE//BG
=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH
=>IH=AH*OE/AE
ΔABG có OE//BG
nên AB/AE=BG/OE
AH/AI=AB/AE=BG/OE
=>AH*OE=AI*BG
=>AH*OG=AI*BG
=>IK=IH
=>ĐPCM
b/ Kéo dài BI cắt (O) tại E
Ta có \(B\widehat{I}D=\frac{1}{2}\left(\widebat{BD}+\widehat{AE}\right)\)( góc có đỉnh bên trong đường tròn (O))
Mà \(\widebat{BD}=\widebat{DC}\); \(\widebat{AE}=\widebat{EC}\)
Nên\(B\widehat{I}D=\frac{1}{2}\left(\widebat{DC}+\widebat{EC}\right)=\frac{1}{2}\widebat{ED}\)
Mặc khác \(D\widehat{B}I=\frac{1}{2}\widebat{ED}\)( tự CM nha )
=> \(B\widehat{I}D=D\widebat{B}I\)
=> tam giác BID cân