K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

A B C K Q D I P O H 1 1 2 1 2 3 1 2 E

  1. Do AB , AC là tiếp tuyến của đường tròn (O) Nên : \(\hept{\begin{cases}OB⊥AB\\OC⊥AC\end{cases}\Rightarrow\widehat{ABO}=\widehat{ACO}=90^0}\)\(\Rightarrow ABOC\)Nội tiếp đường tròn đường kính AO
  2. Ta có : \(\hept{\begin{cases}\widehat{BAE}chung\\\widehat{BEA}=\widehat{ABD}\end{cases}}\Rightarrow\Delta ABD\approx\Delta AEB\)\(\frac{AE}{AB}=\frac{AB}{AD}\Rightarrow AB^2=AE.AD\left(1\right)\)Mà ta lại có tam giác vuông \(\Delta ABO\)Có BH là đường cao ( tính chất của tiếp tuyến ) \(\Rightarrow AH.AO=AB^2\left(2\right)\)từ 1 và 2 \(\Rightarrow AH.AO=AD.AE\left(dpcm\right)\)
  3. Theo tính chất của tiếp tuyến luôn có \(\widehat{I_1}=\widehat{I_2};\widehat{K_1}=\widehat{K_2};\widehat{0_3}=\widehat{0_2}\) Do \(\widehat{A_1}=\widehat{0_1}\)(Cùng phụ góc \(\widehat{AQO}\)) mặt khác \(\widehat{KOQ}=\widehat{O_1}+\widehat{O_2}=\widehat{A_1}+90^0-\widehat{K_1}\left(3\right)\)

       \(\widehat{I_1}=\widehat{I_2}=180-\left(\widehat{K_2}+\widehat{IOK}\right)\)mà \(\widehat{IOK}=180^0-\widehat{BAC}\)Do AO là phân giác của \(\widehat{BAC}\)\(\Rightarrow\widehat{IOK}=90^0-\widehat{A_1}\)Vì vậy ta có :\(\widehat{I_2}=180-\left(\widehat{K_2}+90^0-\widehat{A_1}\right)=90^0+\widehat{A_1}-\widehat{K}_2\left(4\right)\)

từ 3 và 4 ta có \(\widehat{I_1}=\widehat{KOQ}\)

Vì \(\widehat{APO}=\widehat{AQP}\)\(\Rightarrow\Delta IPO=\Delta OQK\)

\(\Rightarrow\frac{IP}{OP}=\frac{OQ}{QK}\Leftrightarrow IP.QK=OQ.OP\)Mà \(OP=OQ=\frac{PQ}{2}\)\(\Rightarrow IP.QK=\left(\frac{PQ}{2}\right)^2\Leftrightarrow PQ^2=4IP.QK\le\left(IP+QK\right)^2\)\(\Rightarrow IP+QK\ge PQ\)

29 tháng 9 2018

a , Điểm O nằm giữa một điểm bất kì khác O của tia Ox và một điểm bất kì khác O của tia Oy.

Vẽ hình:

O B A x y

b , không còn cách nào khác kết quả trên 

29 tháng 3 2020

jup mk đi mak mk xi mn đóa!!

huhuhuhuhhuhhu

anh đi wa chj đi lại ai bt thì giải hộ e ik rồi e k cho

29 tháng 3 2020

có k ko vậy

NV
7 tháng 1 2024

a.

Do AB là tiếp tuyến của (O) \(\Rightarrow AB\perp OB\Rightarrow\Delta ABO\) vuông tại B

\(\Rightarrow\Delta ABO\) nội tiếp đường tròn đường kính OA (1)

Tương tự, do AC là tiếp tuyến của (O) \(\Rightarrow\Delta ACO\) vuông tại C

\(\Rightarrow\Delta ACO\) nội tiếp đường tròn đường kính OA (2)

(1);(2) \(\Rightarrow\)4 điểm A,B,O,C cùng thuộc đường tròn đường kính OA

b.

Do BD là đường kính và E là điểm thuộc đường tròn nên \(\widehat{BED}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{BED}=90^0\)

Xét hai tam giác EAB và EBD có:

\(\left\{{}\begin{matrix}\widehat{AEB}=\widehat{BED}=90^0\\\widehat{EBA}=\widehat{EDB}\left(\text{cùng phụ }\widehat{EBD}\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta EAB\sim\Delta EBD\left(g.g\right)\Rightarrow\dfrac{DE}{BE}=\dfrac{BD}{AB}\)

//\(\widehat{BCD}\) là góc nội tiếp chắn nửa đường tròn \(\Rightarrow\widehat{BCD}=90^0\)

Do \(AB=AC\) (t/c hai tiếp tuyến cắt nhau) và \(OB=OC=R\)

\(\Rightarrow OA\) là trung trực của BC \(\Rightarrow OA\perp BC\) tại H

Xét hai tam giác BCD và AHB có:

\(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{AHB}=90^0\\\widehat{ABC}=\widehat{BDC}\left(\text{cùng chắn cung BC}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta BCD\sim\Delta AHB\left(g.g\right)\)

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{BH}\Rightarrow\dfrac{CD}{BH}=\dfrac{DE}{BE}\)

Xét hai tam giác CDE và BHE có: 

\(\left\{{}\begin{matrix}\dfrac{CD}{BH}=\dfrac{DE}{BE}\\\widehat{CDE}=\widehat{HBE}\left(\text{cùng chắn }CE\right)\end{matrix}\right.\)  \(\Rightarrow\Delta CDE\sim\Delta BHE\left(g.g\right)\)

\(\Rightarrow\widehat{CED}=\widehat{BEH}\)

Mà \(\widehat{BEH}+\widehat{DEH}=\widehat{BED}=90^0\)

\(\Rightarrow\widehat{HEC}=\widehat{CED}+\widehat{DEH}=90^0\)

loading...

a: Ta có: ΔOBA vuông tại B

=>B,O,A cùng nằm trên đường tròn đường kính OA(1)

Ta có: ΔOCA vuông tại C

=>O,C,A cùng nằm trên đường tròn đường kính OA(2)

Từ (1) và (2) suy ra B,O,A,C cùng thuộc một đường tròn

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔEBD vuông tại E và ΔEAB vuông tại E có

\(\widehat{EBD}=\widehat{EAB}\left(=90^0-\widehat{BDA}\right)\)

Do đó: ΔEBD~ΔEAB

=>\(\dfrac{ED}{EB}=\dfrac{BD}{AB}\)

 

31 tháng 12 2023

Cảm ơn bạn nhiều