Từ điểm M nằm ngoài đường tròn (O; R), vẽ tiếp tuyến MA và cát tuyến MBC (B nằm giữa M và C) .
a)Chứng minh : MA 2= MB.MC
b) Gọi BD, CE lần lượt là 2 đường cao của tam giác ABC. Chứng minh ED // MA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm tren đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
mình cần bài này gấp cam on bạn nhiều lắm mình vẽ tượng trung thôi nhưng kiểu như v
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB^2=AM*AN
a: Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của CB
b) Xét tứ giác OMEC có
\(\widehat{OCE}\) và \(\widehat{OME}\) là hai góc đối
\(\widehat{OCE}+\widehat{OME}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OMEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét ΔAMB và ΔACM có
\(\widehat{AMB}=\widehat{ACM}\)
\(\widehat{MAB}\) chung
Do đó: ΔAMB∼ΔACM
Suy ra: AM/AC=AB/AM
hay \(AM^2=AB\cdot AC\)
b: Xét tứ giác AMON có
\(\widehat{AMO}+\widehat{ANO}=180^0\)
Do đó: AMON là tứ giác nội tiếp(1)
Xét tứ giác AHON có
\(\widehat{AHO}+\widehat{ANO}=180^0\)
Do đó:AHON là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra A,M,O,N,H cùng thuộc một đường tròn
hay AMHN là tứ giác nội tiếp
Từ điểm M ở ngoài đường tròn(O;R) vẽ tiếp tuyến MA đến đường tròn.E là trung điểm AM ; I,H lần lượt là hình chiếu của E và A trên MO. Từ I vẽ tiếp tuyến IK với(O)
a.CMr I nằm ngoài đường tròn( O;R)
b. Qua M vẽ cát tuyến MBC(B nằm giữa M và C) chứng minh rằng tứ giác BHOC nội tiếp
c.CM: HA là tia phân giác của góc BHC và tam giác MIK cân