Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), có BC=R\(\sqrt{3}\)và AB<AC. Gọi H là trực tâm tam giác ABC, nối AH cát đường tròn tại điểm D khác A.
1. tính góc BAC. Suy ra tam giác OAH cân
2. chứng minh rằng AB.BC=AB.CD+AC.BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ADME nội tiếp \(\Rightarrow\angle ADI=\angle IME\)
Xét \(\Delta IAD\) và \(\Delta IEM:\) Ta có: \(\left\{{}\begin{matrix}\angle AID=\angle EIM\\\angle ADI=\angle IME\end{matrix}\right.\)
\(\Rightarrow\Delta IAD\sim\Delta IEM\left(g-g\right)\Rightarrow\dfrac{IA}{IE}=\dfrac{ID}{IM}\Rightarrow IA.IM=ID.IE\)
ABMC nội tiếp \(\Rightarrow\angle MCB=\angle MAB=\dfrac{1}{2}\angle BAC\)
Ta có: \(\angle MCI=\angle MCB+\angle ICB=\dfrac{1}{2}\angle BAC+\dfrac{1}{2}\angle ACB\)
\(=\angle IAC+\angle ICA=\angle MIC\)
\(\Rightarrow\Delta MIC\) cân tại M \(\Rightarrow MI=MC\)
b) Kẻ \(OF\bot MC\Rightarrow F\) là trung điểm MC (\(\Delta OMC\) cân tại O)
\(\Rightarrow OF\) là phân giác \(\angle MOC\)
\(\Rightarrow\angle MOF=\dfrac{1}{2}\angle MOC=\dfrac{1}{2}.2\angle MAC=\angle MAC\)
\(\Rightarrow sinMOF=sinMAC\)
Ta có: \(MC=2MF=2.\dfrac{MF}{MO}.MO=2.sinMOF.R=2RsinMAC\)
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Xét tứ giác BCEF có
\(\widehat{BEC}=\widehat{BFC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
Tổng quát cho câu 2 là định lí Ptolemy, như sau: Cho \(ABCD\) nội tiếp bất kì. Khi đó \(AC.BD=AB.CD+AD.BC\).
CM: Vẽ \(E\in AC\) sao cho \(\widehat{ABD}=\widehat{EBC}\).
Khi đó có hai tam giác sau đồng dạng \(ABD\) và \(EBC\), \(ABE\) và \(DBC\).
Suy ra tỉ lệ cạnh: \(\frac{AD}{EC}=\frac{BD}{BC}\) và \(\frac{AB}{DB}=\frac{AE}{DC}\).
Hay \(AD.BC=BD.EC\) và \(AB.DC=AE.DB\)
Cộng lại: \(AB.CD+AD.BC=BD\left(AE+EC\right)=AC.BD\)