K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Tổng quát cho câu 2 là định lí Ptolemy, như sau: Cho \(ABCD\) nội tiếp bất kì. Khi đó \(AC.BD=AB.CD+AD.BC\).


A B C D E

CM: Vẽ \(E\in AC\) sao cho \(\widehat{ABD}=\widehat{EBC}\).

Khi đó có hai tam giác sau đồng dạng \(ABD\) và \(EBC\)\(ABE\) và \(DBC\).

Suy ra tỉ lệ cạnh: \(\frac{AD}{EC}=\frac{BD}{BC}\) và \(\frac{AB}{DB}=\frac{AE}{DC}\).

Hay \(AD.BC=BD.EC\) và \(AB.DC=AE.DB\)

Cộng lại: \(AB.CD+AD.BC=BD\left(AE+EC\right)=AC.BD\)

29 tháng 6 2021

a) Vì ADME nội tiếp \(\Rightarrow\angle ADI=\angle IME\)

Xét \(\Delta IAD\) và \(\Delta IEM:\) Ta có: \(\left\{{}\begin{matrix}\angle AID=\angle EIM\\\angle ADI=\angle IME\end{matrix}\right.\)

\(\Rightarrow\Delta IAD\sim\Delta IEM\left(g-g\right)\Rightarrow\dfrac{IA}{IE}=\dfrac{ID}{IM}\Rightarrow IA.IM=ID.IE\)

ABMC nội tiếp \(\Rightarrow\angle MCB=\angle MAB=\dfrac{1}{2}\angle BAC\)

Ta có: \(\angle MCI=\angle MCB+\angle ICB=\dfrac{1}{2}\angle BAC+\dfrac{1}{2}\angle ACB\)

\(=\angle IAC+\angle ICA=\angle MIC\)

\(\Rightarrow\Delta MIC\) cân tại M \(\Rightarrow MI=MC\)

b) Kẻ \(OF\bot MC\Rightarrow F\) là trung điểm MC (\(\Delta OMC\) cân tại O)

\(\Rightarrow OF\) là phân giác \(\angle MOC\)

\(\Rightarrow\angle MOF=\dfrac{1}{2}\angle MOC=\dfrac{1}{2}.2\angle MAC=\angle MAC\)

\(\Rightarrow sinMOF=sinMAC\)

Ta có: \(MC=2MF=2.\dfrac{MF}{MO}.MO=2.sinMOF.R=2RsinMAC\)

 

 

a: Xét ΔABC có

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

Xét tứ giác AEHF có 

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

Xét tứ giác BCEF có 

\(\widehat{BEC}=\widehat{BFC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

Chọn D

10 tháng 3 2022

D