Cho đtron (O; R), đường kính AB, dây cung DE. Tia DE cắt AB tại C biết \(\widehat{DOC}\) = 90o, CO = 3R
a, Tính CD, DE theo R
b, C/m rằng: CD.CE = CA.CB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt thôi nhé
a) Các cạnh // => Hình bình hành
T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi
b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //
c) 1] OO' là đường trung trực của AB => đường trung bình
2] CB//OO'
Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng
a: Xét (O) có
MB,MA là tiếp tuyến
nên MB=MA
Xét (O') cos
MA,MC là tiếp tuyến
nên MA=MC=>MA=BC/2
Xét ΔABC có
AM la trung tuyến
AM=BC/2
Do đó; ΔABC vuông tại A
b: Gọi H là trung điểm của OO'
Xét hình thang OBCO' có
M,H lần lượt là trung điểm của BC,OO'
nên MH là đường trung bình
=>MH//BO//CO'
=>MH vuông góc với BC
=>BC là tiếp tuyến của (H)
a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB và MO là phân giác của \(\widehat{AMB}\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
b: MO là phân giác của \(\widehat{AMB}\)
=>\(\widehat{AMO}=\widehat{BMO}=\dfrac{60^0}{2}=30^0\)
Xét ΔOAM vuông tại A có
\(tanAMO=\dfrac{OA}{AM}\)
=>\(\dfrac{5}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)
=>\(AM=5\sqrt{3}\)(cm)
=>\(C_{MAB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)
c: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
=>AB\(\perp\)BC(1)
OA=OB
MA=MB
Do đó: OM là đường trung trực của AB
=>OM vuông góc AB(2)
Từ (1),(2) suy ra OM//BC
Xét tứ giác BMOC có
BC//OM
nên BMOC là hình thang
a) Xét tứ giác AOCM có
\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối
\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AOCM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
nên A,O,C,M cùng nằm trên một đường tròn(đpcm)
Bổ sung: ΔABC cân tại A
ΔABC cân tại A
=>AO đi qua trug diểm I của EF
Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)
Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB
=>OE//IK//GB
ΔABG có IK//GB
nên IK/BG=AI/AG
=>IK=AI*BG/AG
ΔABH có EI//BH
ΔABE có OE//BG
=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH
=>IH=AH*OE/AE
ΔABG có OE//BG
nên AB/AE=BG/OE
AH/AI=AB/AE=BG/OE
=>AH*OE=AI*BG
=>AH*OG=AI*BG
=>IK=IH
=>ĐPCM
a: ΔCOD vuông tại O
=>\(CO^2+OD^2=CD^2\)
=>\(CD^2=\left(3R\right)^2+R^2=10R^2\)
=>\(CD=R\sqrt{10}\)
b: Xét (O) có A,B,E,D cùng thuộc đường tròn
nên ABED là tứ giác nội tiếp
=>\(\widehat{EAB}+\widehat{EDB}=180^0\)
mà \(\widehat{EAB}+\widehat{CAE}=180^0\)
nên \(\widehat{CAE}=\widehat{CDB}\)
Xét ΔCAE và ΔCDB có
\(\widehat{CAE}=\widehat{CDB}\)
\(\widehat{ECA}\) chung
Do đó: ΔCAE đồng dạng với ΔCDB
=>\(\dfrac{CA}{CD}=\dfrac{CE}{CB}\)
=>\(CA\cdot CB=CD\cdot CE\)