Câu 2: Trên đường tròn (O;R), lấy các điểm A,B,C sao cho góc AOB= 90 độ, góc BAC = 30 độ. Tính số đo góc CBO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Để MONP là hình vuông thì đường chéo OM=ON\(\sqrt{2}\)=R\(\sqrt{2}\)
Dựng điểm M: Ta dựng hình vuông OACD, dựng đường tròn tâm O đi qua điểm D, cắt (d) tại M
CM: Từ M vã 2 tiếp tuyến MN và MP ta có: \(MN=\sqrt{MO^2-ON^2}=R\)
Nên tam giác ONM vuông cân tại N. Tương tự tam giác OMP vuông cân tại P do đó MNOP là hình vuông
Bài toán luôn có 2 nghiệm vì \(OM=R\sqrt{2}>R\)
3. Ta có MN và MP là 2 tiếp tuyến của (O) nên MNOP là tứ giác nội tiếp đường tròn đường kính OM. Tâm là trung điểm H của OM. Suy ra tam giác cân MPO nội tiếp trong đường tròn đường kính OM, tâm là H
Kẻ \(OE\perp AB\) thì E là trung điểm của AB (cố định ). kẻ \(HL\perp\left(d\right)\) thì HL//OE nên HL là đường trung bình của tam giác OEM => HL=1/2 OE (không đổi)
Do đó khi M di động trên (d) thì H luôn cách đều (d) một đoạn không đổi, nên H chạy trên đường thẳng (d')//(d) và (d') đi qua trung điểm của đoạn OE
Ta có OM là phân giác góc NMP (tính chất 2 tiếp tuyến cắt nhau). Kẻ tia phân giác góc PNM cắt đường tròn (O) tại điểm F khi đó NF=FP (ứng với góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung bằng nhau)
=> F ở trên OM dó đó F là tâm đường tròn nội tiếp tam giác MNP
Vậy khi M di động trên (d) thì tâm đường tròn nội tiếp tam giác MNP chạy trên đường tròn (O)
d. OF//BD nên \(\widehat{FOD}=\widehat{ODB}\)
Mà \(\widehat{ODB}=\widehat{ODF}\Rightarrow\widehat{FOD}=\widehat{ODF}\)
Do đó FOD cân tại F
\(\Rightarrow OF=FD\)
Áp dụng Talet: \(\dfrac{BD}{FD}=\dfrac{BD}{OF}=\dfrac{DH}{HF}\)
\(\Rightarrow\dfrac{BD}{DF}+\dfrac{DF}{HF}=\dfrac{DH}{HF}+\dfrac{DF}{HF}=\dfrac{DH+DF}{HF}=\dfrac{HF}{HF}=1\left(đpcm\right)\)
b) Trong (O) có EF là dây cung không đi qua O và K là trung điểm EF
\(\Rightarrow OK\bot EF\Rightarrow\angle OKM=90=\angle ODM\Rightarrow OKDM\) nội tiếp
mà theo câu a) MCOD nội tiếp nên M,D,K,O,C cùng thuộc 1 đường tròn
\(\Rightarrow MDKC\) nội tiếp
\(\Rightarrow\angle MKD=\angle MCD=\angle MDC\) (\(\Delta MCD\) cân tại M) \(=\angle MKC\)
\(\Rightarrow KM\) là phân giác \(\angle DKC\)
2: I nằm trên trung trực của EF
=>IE=IF
=>góc IEF=góc IFE=góc OKE
=>IF//OK
=>IF vuông góc AB tại F
=>AB là tiêp tuyến của (I;IE)
Ta có hình vẽ sau:
Vì góc nội tiếp \(\widehat{BAC}\) chắn \(\stackrel\frown{BC}\) nên \(sđ\stackrel\frown{BC}=2\cdot sđ\widehat{BAC}=2\cdot30^o=60^o\)
Vì B,C ∈ (O;R) và nên \(\left[{}\begin{matrix}OB=OC\\\widehat{BOC}=60^o\end{matrix}\right.\)
Xét ▲OBC có: \(OB=OC\)
\(\widehat{BOC}=60^o\)
⇔▲OBC đều
➤\(\widehat{CBO}=60^o\)