K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

28 tháng 3 2022

Ta có hình vẽ sau:

A O B C 30

Vì góc nội tiếp \(\widehat{BAC}\) chắn \(\stackrel\frown{BC}\) nên \(sđ\stackrel\frown{BC}=2\cdot sđ\widehat{BAC}=2\cdot30^o=60^o\)

Vì B,C ∈ (O;R) và  nên \(\left[{}\begin{matrix}OB=OC\\\widehat{BOC}=60^o\end{matrix}\right.\)

Xét ▲OBC có: \(OB=OC\) 

                         \(\widehat{BOC}=60^o\)

⇔▲OBC đều 

\(\widehat{CBO}=60^o\)

Câu 59: D

Câu 60: C

28 tháng 9 2021

câu 59: d

câu 60: c

 

Câu 9: B

Câu 10: A

Câu 11; C

9 tháng 1 2022

ủa ủa câu 11 ở đâu mà chọn thế

16 tháng 6 2018

2. Để MONP là hình vuông thì đường chéo OM=ON\(\sqrt{2}\)=R\(\sqrt{2}\)

Dựng điểm M: Ta dựng hình vuông OACD, dựng đường tròn tâm O đi qua điểm D, cắt (d) tại M

CM: Từ M vã 2 tiếp tuyến MN và MP ta có: \(MN=\sqrt{MO^2-ON^2}=R\)

Nên tam giác ONM vuông cân tại N. Tương tự tam giác OMP vuông cân tại P do đó MNOP là hình vuông

Bài toán luôn có 2 nghiệm vì \(OM=R\sqrt{2}>R\)

16 tháng 6 2018

3. Ta có MN và MP là 2 tiếp tuyến của (O) nên MNOP là tứ giác nội tiếp đường tròn đường kính OM. Tâm là trung điểm H của OM. Suy ra tam giác cân MPO nội tiếp trong đường tròn đường kính OM, tâm là H

Kẻ \(OE\perp AB\) thì E là trung điểm của AB (cố định ). kẻ  \(HL\perp\left(d\right)\) thì HL//OE nên HL là đường trung bình của tam giác OEM => HL=1/2 OE (không đổi)

Do đó khi M di động trên (d) thì H luôn cách đều (d) một đoạn không đổi, nên H chạy trên đường thẳng (d')//(d) và (d') đi qua trung điểm của đoạn OE

Ta có OM là phân giác góc NMP (tính chất 2 tiếp tuyến cắt nhau). Kẻ tia phân giác góc PNM cắt đường tròn (O) tại điểm F khi đó NF=FP (ứng với góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung bằng nhau)

=> F ở trên OM dó đó F là tâm đường tròn nội tiếp tam giác MNP

Vậy khi M di động trên (d) thì tâm đường tròn nội tiếp tam giác MNP chạy trên đường tròn (O)

7 tháng 5 2017

mình đã giải thích rồi thây bạn Dinh Thi Ngoc Huyen

7 tháng 5 2017

D.tất cả đều sai

~~~~~~~~~~~~~~~~~~

k mình nha

22 tháng 11 2021

d. OF//BD nên \(\widehat{FOD}=\widehat{ODB}\)

Mà \(\widehat{ODB}=\widehat{ODF}\Rightarrow\widehat{FOD}=\widehat{ODF}\)

Do đó FOD cân tại F

\(\Rightarrow OF=FD\)

Áp dụng Talet: \(\dfrac{BD}{FD}=\dfrac{BD}{OF}=\dfrac{DH}{HF}\)

\(\Rightarrow\dfrac{BD}{DF}+\dfrac{DF}{HF}=\dfrac{DH}{HF}+\dfrac{DF}{HF}=\dfrac{DH+DF}{HF}=\dfrac{HF}{HF}=1\left(đpcm\right)\)

6 tháng 6 2021

b) Trong (O) có EF là dây cung không đi qua O và K là trung điểm EF

\(\Rightarrow OK\bot EF\Rightarrow\angle OKM=90=\angle ODM\Rightarrow OKDM\) nội tiếp 

mà theo câu a) MCOD nội tiếp nên M,D,K,O,C cùng thuộc 1 đường tròn

\(\Rightarrow MDKC\) nội tiếp

\(\Rightarrow\angle MKD=\angle MCD=\angle MDC\) (\(\Delta MCD\) cân tại M) \(=\angle MKC\)

\(\Rightarrow KM\) là phân giác \(\angle DKC\)undefined

 

2: I nằm trên trung trực của EF

=>IE=IF

=>góc IEF=góc IFE=góc OKE

=>IF//OK

=>IF vuông góc AB tại F

=>AB là tiêp tuyến của (I;IE)