Cho (O;R), đường kính AB. Tiếp tuyến tại M bất kì của (O) cắt các tiếp tuyến tại A, B lần lượt tại C, D.
- Chứng minh AC.BD=\(R^2\).
- Gọi I và J lần lượt là giao điểm của OC với AM và OD với BM. Chứng minh IJ // AB
- Xác định vị trí của điểm M để (CIJD) có bán kính nhỏ nhất.
M A B C D I J O' O
1/ Theo tính chất các tiếp tuyến cắt nhau ta có : AC = CM ; BD = MD
Suy ra : \(AC.BD=MC.MD=OM^2=R^2\) (OM là đường cao tam giác vuông COD)
2/ Vì C và D là giao điểm của các tiếp tuyến cắt nhau nên theo tính chất ta có
OC vuông góc với AM và OD vuông góc với BM. Mà góc AMB chắn nửa cung tròn
đường kính AB nên có số đo bằng 90 độ hay AM vuông góc với BM.
Từ đó ta có \(\hept{\begin{cases}OI\text{//}MB\\OA=OB\end{cases}}\) và \(\hept{\begin{cases}OJ\text{//}MA\\OA=OB\end{cases}}\)
Suy ra OI và OJ là các đường trung bình của tam giác AMB => IA = IM và JB = JM
Lại tiếp tục suy ra được IJ là đường trung bình của tam giác AMB => IJ // AB
3/
Gọi O' là đường tròn ngoại tiếp tứ giác CIJD và d khoảng cách từ O' đến CD.
Khi đó ta nhận thấy rằng nếu CD chuyển động nhưng vẫn tiếp xúc với (O) thì d không đổi.
Theo định lí Pytago thì : \(O'D=\sqrt{d^2+\left(\frac{CD}{2}\right)^2}\)
Mà d không đổi, do vậy min O'D <=> min CD.
Ta sẽ tìm giá trị nhỏ nhất của CD.
Ta có : \(CD^2=\left(MC+MD\right)^2\ge4MC.MD=4OM^2\)
\(\Rightarrow CD\ge2OM\) (hằng số). Để điều này xảy ra thì M là điểm chính giữa cung AB.
Vậy M là điểm chính giữa cung AB thì (CIJD) có bán kính nhỏ nhất.
Nếu không ai giải thì vẽ cho mình cái hình mình giải giúp cho. Nhớ vẽ luôn cả tâm đường tròn ngoại tiếp tứ giác CIJD nhé