Cho đường tròn (O;R), đường kính AB. Lấy điếm M thuộc đường tròn (O) (AM<BM). Tiếp tuyến tại A của đường tròn tâm O cắt tia BM tại C.
1. Cm AC^2=CM.CB
2. Tia CO cắt đường tròn (O) lần lượt tại 2 điếm D và E ( điểm D nằm giữa hai điếm C và E). Cm: CM.CB=CD.CE
3. Vẽ dây AK vuông góc CO tại H.Cm: CK là tiếp tuyến của đường tròn (O).
1:
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>AM vuông góc BC tại M
ΔCAB vuông tại A có AM là đường cao
nên CA^2=CM*CB
2:
D,M,B,E cùng thuộc (O)
=>DMBE nội tiếp
=>góc MDE+góc MBE=180 độ
=>góc CDM=góc CBE
Xét ΔCDM và ΔCBE có
góc CDM=góc CBE
góc DCM chung
Do đó: ΔCDM đồng dạng với ΔCBE
=>CD/CB=CM/CE
=>CD*CE=CM*CB
3: ΔOAK cân tại O
mà OH là đường cao
nên OH là phân giác của góc AOK
Xét ΔCAO và ΔCKO có
OA=OK
góc COA=góc KOC
OC chung
Do đó: ΔCAO=ΔCKO
=>góc CKO=90 độ
=>CK là tiếp tuyến của (O)