K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

a, \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-n^2-2n+3n+6=6n+6=6\left(n+1\right)⋮6\) (đpcm)

b, \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮12\) (đpcm)

          Gọi d là ước chung nguyên tố của 2n + 7 và 5n + 2 thì:

     Ta có : 2n + 7 và 5n + 2 đều chia hết cho d

                => 5(2n + 7) và 2(5n + 2) chia hết cho d

                => 10n + 35 và 10n + 4 chia hết cho d

                => (10n + 35) - (10n + 4) chia hết cho d => 31 chia hết cho d

                => d = 31

      Để A tối giản thì d ko bằng 31

               => 2n + 7 ko chia hết cho 31

               => 2n + 7 - 31 ko chia hết cho 31

               => 2n - 28 ko chia hết cho 31

               => 2(n - 14) ko chia hết cho 31

               =>   n - 14 ko chia hết cho 31 ( vì 2 và 31 nguyên tố cùng nhau)

               =>   n - 14 ko bằng 31k 

               =>     n ko bằng 31k + 14( k thuộc Z )

       Vậy với n ko bằng 31k + 14 thì p/s A tối giản.

(BÀI NÀY TỚ HỌC RỒI NÊN CẬU YÊN TÂM)

19 tháng 12 2015

Xét n = 3p => A = 3p(6p+7)(21p+1) chia hết cho 3 vì 3p chia hết cho 3.

        p chẵn => 3p chia hết cho 6 => A chia hết cho 6

        p lẻ => 21p lẻ => 21p + 1 chẵn => A chia hết cho 6

Xét n = 3p+1 => A = (3p+1)(6p+9)(21n+8) chia hết cho 3 vì 6p + 9 chia hết cho 3.

        p chẵn => 21n+8 chẵn=> A chia hết cho 6.

        p lẻ => 3p+1 chẵn => A chia hết cho 6.

Xét n = 3p+2 => A= (3p+2)(6p+11)(21n+15) chia hết cho 3 vì 21n+15 chia hết cho 3.

        p chẵn => 3p + 2 chia hết cho 2 => A chia hết cho 6.

        p lẻ => 21p lẻ => 21p + 15 chẵn => A chia hết cho 6.

Vậy A luôn luôn chia hết cho 6.

 

9 tháng 8 2017

4. \(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)

\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)

\(=a^{2008}\left(a^2-1\right)\left(a^2+1\right)+b^{2008}\left(b^2-1\right)\left(b^2+1\right)+c^{2008}\left(c^2-1\right)\left(c^2+1\right)\)

\(=a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)

Dễ thấy a-1, a, a+1 là 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 3 \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

Tương tự đối với b và c ta suy ra \(A⋮6\) (1)

Xét các số dư của a cho 5

- Nếu \(a⋮5\) thì \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

- Nếu a chia 5 dư 1 thì \(\left(a-1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

- Nếu a chia 5 dư 2 hoặc 3 thì \(\left(a^2+1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

- Nếu a chia 5 dư 4 thì \(\left(a+1\right)⋮5\) nên \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

Như vậy \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\) \(\forall a\in Z_+\)

Tương tự \(\left[b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)\right]⋮5\)

\(\left[c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\right]⋮5\)

Do đó \(A⋮5\) (2)

Từ (1) và (2) suy ra \(A⋮30\)

27 tháng 8 2020

1/ 

10 chia hết cho n => n \(\in\)Ư(10) = {1;2;5;10}

2/ 12 chia hết cho n - 1 => n - 1 \(\in\)Ư(12) = {1;2;3;4;6;12}

=> n \(\in\){2;3;4;5;7;13}

3/ 20 chia hết cho 2n + 1 => 2n + 1 \(\in\)Ư(20) = {1;2;4;5;10;20}

=> 2n \(\in\){0;1;3;4;9;19}

=> n \(\in\){0;2} ( tại vì đề bài cho số tự nhiên nên chỉ có 2 số đây thỏa mãn)

4 / n \(\in\)B(4) = {0;4;8;12;16;20;24;...}

Mà n < 20 => n \(\in\){0;4;8;12;16}

5. n + 2 là ước của 30 => n + 2 \(\in\)Ư(30) = {1;2;3;5;6;10;15;30}

=> n \(\in\){0;1;3;4;8;13;28} (mình bỏ số âm nên mình không muốn ghi vào )

6. 2n + 3 là ước của 10 => 2n + 3 \(\in\)Ư(10) = {1;2;5;10}

=> 2n \(\in\){2;7} (tương tự mình cx bỏ số âm)

=> n = 1 

7. n(n + 1) = 6 = 2.3 => n = 2

28 tháng 10 2016

mai nhé

6 tháng 3 2020

\(A=11^{n+2}+12^{2n+1}\)

\(=11^n.121+144^n.12\)

\(=11^n.133+144^n.12-11^n.12\)

\(=11^n.133+12\left(144^n-12^n\right)\)

Ta có \(a^n-b^n⋮a-b\Rightarrow144^n-12^n⋮133\)

\(\Rightarrow11^n.133+12\left(144^n-12^n\right)⋮133\)

Vậy \(A=11^{n+2}+12^{2n+1}⋮133\left(đpcm\right)\)

15 tháng 2 2016

Ta có:  Vì  \(n\)  là số lẻ (theo giả thiết) nên  \(n\)  sẽ có dạng  \(2k+1\)

Các bước biến đổi:

\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)

                                       \(=\left(n^4-1\right)\left(n^8-1\right)\)

                                       \(=\left(n^4-1\right)^2\left(n^4+1\right)\)

\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)

Khi đó, ta xét  \(\left(n^2-1\right)^2\)  với  \(n=2k+1\)  thì  \(\left(n^2-1\right)^2\)  sẽ trở thành:  

\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)

chia hết cho  \(16\)

Lại có:  \(k\left(k+1\right)\)  chia hết cho  \(2\)  (vì là tích của hai số nguyên liên tiếp) nên  \(\left[k\left(k+1\right)\right]^2\)   chia hết cho  \(4\)

Do đó,  \(\left(n^2-1\right)^2\)  chia hết cho  \(16.4=64\)  \(\left(1'\right)\)

Mặt khác,  với  \(n=2k+1\)  \(\Rightarrow\)  \(\left(n^2+1\right)^2\)  và  \(n^4+1\)  lần lượt là các số chẵn

nên  \(\left(n^2+1\right)^2\)  chia hết cho  \(2^2=4\)   \(\left(2'\right)\)

   và   \(n^4+1\)  chia hết cho  \(2\)   \(\left(3'\right)\)

Từ  \(\left(1'\right);\)  \(\left(2'\right)\)  và  \(\left(3'\right)\)  suy ra  \(n^{12}-n^8-n^4+1\)  chia hết cho \(512\)