Cho 2 biểu thức:
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\&P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}.\)
Tìm GTLN của biểu thức \(M=\frac{A}{P}.\)
Giúp mk giải nha m.n! mk đang cần gấp lắm! THANKS!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))
\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)
\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)
\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)
a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
b)\(S=A\cdot B\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)
\(=1+\frac{1}{\sqrt{x}+2}\)
Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\) đạt GTLN
\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN
GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)
Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)
a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) \(\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(\(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)\)
\(\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(\(=\frac{\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
Vậy \(A=\frac{2}{x-1}vs\left(x\ge0;x\ne1\right)\)
_Ko chắc , đag bận nên còn phần b , tí mk giải nối_
_Minh ngụy_
\(ĐK:x\ge0;x\ne1\)
\(a,A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)\sqrt{x}}\)
\(=\frac{2}{x-1}\)
Vậy với \(x\ge0;x\ne1\)thì \(A=\frac{2}{x-1}\)
\(b,\)Ta có:\(A=\frac{2}{x-1}\)
Để A nhận giá trị nguyên \(\Leftrightarrow2⋮x-1\)
Vì \(x\in Z\Rightarrow x-1\inƯ_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\left(TM\right)\) | \(0\left(TM\right)\) | \(3\left(TM\right)\) | \(-1\left(L\right)\) |
Vậy để A nhận giá trị nguyên \(x\in\left\{2;0;3\right\}\)