a,tìm số nguyên x và y biết:xy-x+2y=3
b,.So sánh M và N biết rằng:
\(M=\frac{101^{102}+1}{101^{103}+1};N=\frac{101^{103}+1}{101^{104}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
xy - x + 2y = 3
x ( y - 1 ) + 2y - 2 = 3 - 2
x ( y - 1 ) + 2 ( y - 1 ) = 1
( y - 1 ) ( x + 2 ) = 1
Xét bảng :
y-1 | 1 | -1 |
x+2 | 1 | -1 |
y | 2 | 0 |
x | -1 | -3 |
Vậy (x;y) = (-1;2) = (-3;0)
a, xy-x+2y=3
<=>x(y-1)+2(y-1)=1
<=>(x+2)(y-1)=1
x+2 | 1 | -1 | |
y-1 | 1 | -1 |
x | -1 | -3 |
y | 2 | 0 |
Ta có:
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
Ta lại có:
\(N=\frac{101^{103}+1}{101^{104}+1}\)
\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)
Ta có : \(101M=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+100+1}{101^{103}+1}=1+\frac{100}{101^{103}+1};\)
\(101N=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=1\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\Rightarrow1+\frac{100}{101^{103}+1}>1+\frac{100}{101^{104}+1}\Rightarrow101M>101N\)
=> M > N
So sánh M và N biết rằng :
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(N=\frac{101^{103}+1}{101^{104}+1}\)
ta có bổ đề sau .với\(\frac{a}{b}>0\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)
mà \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}\)
\(=\frac{101\left(101^{102+1}\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
vậy \(M>N\)
Ta có: \(N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà: \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
Ta có: \(N< \frac{101^{103}+1+100}{101^{104}+1+100};\frac{101^{103}+1+100}{101^{104}+1+100}=M\)
=> N<M
=>
Ta có :
\(N=\frac{101^{103}+1}{101^{104}+1}< 1=\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
Vậy\(N< M\)
a/
$xy-x+2y=3$
$\Rightarrow x(y-1)+2(y-1)=1$
$\Rightarrow (x+2)(y-1)=1$
Do $x,y$ nguyên nên $x+2, y-1$ cũng là số nguyên. Mà tích của chúng bằng $1$ nên ta xét các TH sau:
TH1:
$x+2=1, y-1=1\Rightarrow x=-1; y=2$
TH2:
$x+2=-1, y-1=-1\Rightarrow x=-3; y=0$
b/
\(101M=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}> 1+\frac{100}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=101.\frac{101^{103}+1}{101^{104}+1}=101N\)$\Rightarrow M> N$
Ta có: M =\(\frac{101^{102}+1}{101^{103}+1}=\frac{101^{103}+101}{101^{104}+101}=\frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà : N = \(\frac{101^{103}+1}{101^{104}+1}\)< M = \(\frac{101^{103}+1+100}{101^{104}+1+100}\)
\(\Rightarrow N< M\)
xy - x + 2y = 3
=> x(y-1) + 2y - 2 = 3 + 2
=> x(y-1) + 2(y-1) = 5
=> (x+2)(y+1) = 5
=> x + 2 và y + 1 \(\in\)Ư(5) = {-1;5;-5;1}
ta có bảng :