K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2019

A B C D M N H K

Kẻ MK//AB (\(K\in AH\)) \(\Rightarrow MK\perp AD\) , mà \(AH\perp DM\Rightarrow K\) là trực tâm tam giác \(AMD\Rightarrow DK\perp AM\)

Áp dụng Talet: \(\frac{HM}{BH}=\frac{MK}{AB}\)

\(\frac{BM}{MH}=\frac{CN}{ND}\Leftrightarrow\frac{BM}{MH}+1=\frac{CN}{ND}+1\Leftrightarrow\frac{BH}{MH}=\frac{CD}{ND}\Leftrightarrow\frac{MH}{BH}=\frac{ND}{CD}\)

\(\Rightarrow\frac{MK}{AB}=\frac{ND}{CD}\Rightarrow MK=ND\) (do AB=CD)

Mà KM//AB//CD \(\Rightarrow MKDN\) là hbh (tứ giác có cặp cạnh đối song song và bằng nhau)

\(\Rightarrow DK//MN\Rightarrow MN\perp AM\Rightarrow\widehat{AMN}=90^0\)

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Lời giải:

Xét tam giác ADH và AOH có:

\(\widehat{DAH}=\widehat{OAH}\) (gt)

\(\widehat{AHD}=\widehat{AHO}=90^0\)

AH chung

\(\Rightarrow \triangle ADH=\triangle AOH(g.c.g)\) (1)

\(\Rightarrow AD=AO\Rightarrow \frac{AD}{AO}=1\)

Xét tam giác ADH và AOK có: 

\(\widehat{AHD}=\widehat{AKO}=90^0\)

\(\widehat{DAH}=\widehat{OAB}=\widehat{OAK}\) (gt)

\(\Rightarrow \triangle ADH\sim \triangle AOK(g.g)\Rightarrow \frac{AH}{AK}=\frac{DH}{OK}=\frac{AD}{AO}=1\Rightarrow AH=AK;DH=OK\) 

Vì AO là phân giác của \(\widehat{HAB}\) nên theo tính chất đường phân giác thì:

\(\frac{AH}{AB}=\frac{OH}{OB}\)

Trong đó \(OH=DH\) (do (1)) nên \(OH=\frac{1}{2}OD\). Mà \(OD=OB\) theo tính chất hình bình hành

\(\Rightarrow \frac{AH}{AB}=\frac{OH}{OB}=\frac{1}{2}\)

Mà \(AH=AK\Rightarrow AK=\frac{1}{2}AB\Rightarrow AK=KB\) 

Tam giác AOB có OK vừa là đường cao vừa là đường trung tuyến nên tam giác AOB cân tại O. Do đó OA=OB hay AC=BD nên ABCD là hình chữ nhật (đpcm).

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Hình vẽ:

undefined

18 tháng 3 2020

A B C D H I J R

Gọi R là trung điểm AI

Ta có:ID=IH;RA=RH nên IR là đường trung bình tam giác AIH => IR//AD => IR vuông góc với AB

=> R là trực tâm tam giác AIH => BR vuông góc với AI

Do IR là đường trung bình tam giác AIH nên IR//AD//BJ;IR=1/2AD=BJ => BRIJ là hình bình hành => BR//IJ

Mà BR vuông góc với AI nên IJ vuông góc với AI => ^AIJ=900

27 tháng 3 2020

@Cool Kid : Hình như R là trung điểm của AH mới đúng ?!?!!

8 tháng 9 2018

Gợi ý:

a)  Gọi O là giao của AC và BD

Dễ thấy: MO // EC (đtb)

=>  góc ECH = OBC

góc OBC = OCB

góc ECH = KHC

suy ra:  góc KHC = OCB

=> HK // AC 

b)  Gọi giao của KH và EC là I

Dễ thấy:  MI // AC (đtb)

mà HK// AC

suy ra:H,K, M thẳng hàng