K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CM=1/3CD=1/3*2AB=2/3AB

Xét ΔNMC và ΔNBA có

góc NMC=góc NBA

góc MNC=góc BNA

=>ΔNMC đồng dạng với ΔNBA

=>NC/NA=MC/BA=2/3

=>CN/CA=2/5

Xét ΔOCD và ΔOAB có

góc OCD=góc OAB

góc COD=góc AOB

=>ΔOCD đồng dạng với ΔOAB

=>OC/OA=CD/AB=2

=>CO/CA=2/3

=>CO=2/3CA

mà CN=2/5CA

nên CO/CN=2/3:2/5=5/3

=>CN=3/5CO

=>ON/OC=2/5

OC/OA=2

=>S DOC=2*S DOA=2*S COB và S OCD/S OAB=(CD/AB)^2=4

=>S DOA=1/2*S DOC; S COB=1/2*S DOC; S OAB=1/4*S DOC

S DOA+S COB+S OAB+S DOC=45

=>S DOC(1/2+1/2+1/4+1)=45

=>S DOC=20

=>S DON=2/5*20=8cm2

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0
21 tháng 11 2021

Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)

21 tháng 11 2021

viết code hả bạn??? đọc lòi mắt

16 tháng 10 2023

Sửa đề: Chứng minh AK=KI=IC

a: Xét tứ giác BEDF có

DE//BF

DE=BF\(\left(DE=\dfrac{1}{2}AD;BF=\dfrac{1}{2}BC;AD=BC\right)\)

Do đó: BEDF là hình bình hành

b: BEDF là hình bình hành

=>BE//DF

Xét ΔAID có

E là trung điểm của AD

EK//ID

Do đó: K là trung điểm của AI

=>AK=KI

Xét ΔBKC có

F là trung điểm của CB

FI//BK

Do đó: I là trung điểm của KC

=>KI=IC

=>AK=KI=IC

18 tháng 7 2023

A B C D O M N P Q

a/

Ta có

MN//AB (gt)

AD//BC=> AM//BN

=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có

AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/

Xét hbh ABCD 

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Xét hbh APCQ có

IA=IC  (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng

c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O

30 tháng 1 2018

Chứng minh được AKCI là hình bình hành Þ ĐPCM

Xét ΔADC có 

O là trung điểm của AC

E là trung điểm của AD

Do đó: OE là đường trung bình của ΔADC

Suy ra: OE//DF và OE=DF

hay OEDF là hình bình hành