Cho hình bình hành ABCD.gọi Ilà giao điểm của hai đường chéo AC và BD ;M,N theo thứ tự là trung điểm của ID và IB
a,Chứng minh rằng AM//CN
b,Kéo dài AM cắt DC tại E chứng minh DE=1/2 EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi giao của AC và BD là O
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔADC có
AN,DO là trung tuyến
AN cắt DO tại F
Do đó: F là trọng tâm cuả ΔADC
Xét ΔABC có
AM,BO là trung tuyến
AM cắt BO tại E
Do đó: E là trọng tâm của ΔABC
b: E là trọng tâm của ΔABC
=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
F là trọng tâm của ΔDAC
=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}\cdot BD\)
DF+FE+EB=DB
=>\(FE=DB-\dfrac{1}{3}DB-\dfrac{1}{3}DB=\dfrac{1}{3}DB\)
=>EB=EF=DF
a: Xét ΔADE và ΔCBF có
AD=CB
góc ADE=góc CBF
DE=BF
=>ΔADE=ΔCBF
=>AE=CF
Xét ΔABF và ΔCDE có
AB=CD
góc ABF=góc CDE
BF=DE
=>ΔABF=ΔCDE
=>AF=CE
Xét tứ giác AECF có
AE=CF
AF=CE
=>AECF là hình bình hành
b: Xét tứ giác AMCN có
AM//CN
AN//CM
=>AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,MN đồng quy
Theo tính chất hình bình hành ta có: I là trung điểm của AC và BD.
Suy ra:
Xét tam giác AID có: A I 2 + I D 2 = A D 2 ( 3 2 + 4 2 = 5 2 = 25 )
Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD
Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.
Suy ra: AB = BC = CD = DA = 5cm
Chọn đáp án B
IA = IC và IB = ID => Điểm I là trung điểm của hai đường chéo AC và BD.
Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)
\(3\overrightarrow{AP}-2\overrightarrow{AC}=\overrightarrow{0}\)
\(VT=3\left(\overrightarrow{AD}+\overrightarrow{DP}\right)-2\left(\overrightarrow{AD}+\overrightarrow{DC}\right)\)
\(=3\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{AD}-2\overrightarrow{DC}\)
\(=\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{DC}\)
\(=\overrightarrow{AD}+3\left(\overrightarrow{DC}+\overrightarrow{CP}\right)-2\overrightarrow{DC}\)
\(=\overrightarrow{AD}+3\overrightarrow{DC}+3\overrightarrow{CP}-2\overrightarrow{DC}\)
\(=\widehat{AD}+\overrightarrow{DC}+3.\dfrac{2}{3}\overrightarrow{CO}\)
\(=\overrightarrow{AD}+\overrightarrow{DC}+2.\dfrac{1}{2}\overrightarrow{CA}\)
\(=\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CA}\)
\(=\overrightarrow{AC}+\overrightarrow{CA}\)
\(=\overrightarrow{AA}=\overrightarrow{0}=VP\) (điều phải chứng minh)
A(1;0) B (2;0) C D I(x;x) 4
Từ giả thiết suy ra khoảng cách giữa 2 đường thẳng song song AB, CD bằng 4.
Từ đó, do A, B thuộc Ox nên C(c;4), D(d;4)
Vì 2 đường chéo AC, BD cắt nhau tại I nằm trên đường thẳng y=x nên ta có hệ :
\(\begin{cases}2x=c+1=d+2\\2x=0+4\end{cases}\)
Từ đó tìm được x=2, c=3, d=2.
Vậy C(3;4), D(2;4)
cho mình hỏi hình bình hành có diện tích bằng 4 thì sao suy ra được khoảng cách giữa 2 đường thẳng song song =4