Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC ; K là điểm đối xứng với M qua I.
a) Tứ giác AMCk là hình gì ? Vì sao ?
b, Trên tia đối của tia MA lấy điểm E sao cho ME=MA.Chứng minh tứ giác ABEC là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có:
M là trung điểm BC(AM là trung tuyến)
I là trung điểm AB(gt)
=> MI là đường trung bình
=> MI//AC
=> ACMI là hthang
b) Ta có: MI là đường trung bình của tam giác ABC (cmt)
\(\Rightarrow AC=2.MI=2.8=16\left(cm\right)\)
a.Ta có:BM=CM===5(cm)
Vì AM là trung tuyến
=>AM là đường cao
Xét ΔABM vuông tại M có:
AB2=AM2+MB2(định lý pytago)
Hay:132=AM2+52
169=AM2+25
AM2=
AM=12(cm)
b.ta có M là trung điểm NC nên MC=MB
ta lại có N là trung điểm MB => MN=NB
vậy MC=2323MN
xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD
mà M thuộc CN và MC=2323MN nên theo định nghĩa M là trọng tâm tgiac ACD
mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
a: Sửa đề ΔAMC
Xét ΔAMC và ΔDMB có
góc MCA=góc MBD
MC=MB
góc AMC=góc DMB
=>ΔAMC=ΔDMB
b: ΔAMC=ΔDMB
=>AC=BD
=>BD=AB
c: Xét ΔBAD có
BM,DP là trung tuyến
BM cắt DP tại O
=>O là trọng tâm
a, Vì M,I là trung điểm BC,AC nên MI là đtb tg ABC
Do đó \(AB=2MI=8\left(cm\right)\)
b, Vì I là trung điểm AC và MK nên AKMB là hbh
Do đó AK//MC hay AK//MB và \(AK=MC=MB\) (M là trung điểm BC)
Vậy AKMB là hbh
a: Xét ΔACB có
M là trung điểm của BC
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔACB
Suy ra: \(MI=\dfrac{AB}{2}\)
hay AB=8
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do dó: AMCK là hình chữ nhật
b: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
AB=AC
Do đó: ABEC là hình thoi