Cho tam giác ABC có góc A=120độ . Tia phân giác của góc BAC cắt BC tại D . Tia phân giác của góc ADC cắt AC tại I . Gọi H;K thứ tự là hình chiếu của I . Trên các đường thẳng AB và BC . Chứng minh IH=IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
trên tia đối cũa tia ad ,,vẽ tia at,trên tia at vẽ điểm n sao cho an =ak
bad =cad =120 độ chia 2 = 60 độ
suy ra góc bad =cad= nai = 6o độ (2 góc đối đỉnh)
góc bac +cai =180 độ mà bac =120 độ nên cai = 60 độ
nên góc nai bằng kai
cmd tam giac nai =kai (c.g.c) nên góc ani=aki = 90 độ và in=ik (2ctu)
cmd tam giac dni=dei (ch.gn)suy ra in =ie
từ 2 điều trên suy ra ik =ie
a: AB<AC
=>góc B>góc C
góc ADB=góc DAC+góc ACD
góc ADC=góc BAD+góc ABD
mà góc ACD<góc ABD; góc BAD=góc CAD
nên góc ADB<góc ADC
b: Xét ΔABE có
AD vừa là đường cao, vừa là phân giác
=>ΔABE cân tại A
c: AD là phân giác
=>BD/AB=CD/AC
mà AB<AC
nên BD<CD
a:
ΔABC vuông tại A nên BC là cạnh lớn nhất
=>AC<BC
mà AB<AC
nên AB<AC<BC
Xét ΔABC có AB<AC<BC
mà \(\widehat{C};\widehat{B};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: Ta có: \(\widehat{ABI}=\widehat{CBI}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACI}=\widehat{BCI}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ACB}< \widehat{ACB}\)
nên \(\widehat{ICB}< \widehat{IBC}\)
Xét ΔIBC có \(\widehat{ICB}< \widehat{IBC}\)
mà IB,IC lần lượt là cạnh đối diện của các góc ICB và góc IBC
nên IB<IC
1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C
\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)
\(\Delta DFC\)có\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD
2.Theo chứng minh câu 1,ta được BD < CD
\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)
=> D nằm giữa B,M => AD nằm giữa AB,AM (1)
\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)mà\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)
\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)
=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm