Bài 1: Cho tam giác DEF có DE = DF; I là điểm nằm trong tam giác sao cho IE = IF, H là trung điểm của EF. CM:
a) DI là tia phân giác của góc DEF
b) 3 điểm D, I , H thẳng hàng
c) tam giác IHE = tam giác IHF
d) IH là đường trung trực của EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C_{DAB}=\dfrac{1}{2}C_{DFE}=\dfrac{1}{2}\cdot30=15\left(cm\right)\)
Áp dụng PTG: \(EF=\sqrt{DE^2+DF^2}=13\left(cm\right)\)
Vì A,B là trung điểm DE,DF nên AB là đtb tg DEF
Do đó \(AB=\dfrac{1}{2}EF=\dfrac{13}{2}\left(cm\right);AD=\dfrac{1}{2}DE=\dfrac{5}{2}\left(cm\right);BD=\dfrac{1}{2}DF=6\left(cm\right)\)
Vậy \(P_{DAB}=AB+BD+DA=\dfrac{13}{2}+\dfrac{5}{2}+6=15\left(cm\right)\)
\(C_{DAB}=\dfrac{1}{2}C_{DEF}=\dfrac{1}{2}\cdot26\left(cm\right)=13\left(cm\right)\)
ta thấy 3x3+4x4=5x5 nên nó là tam giác vuông
diện tích là S=1/2x3x4=6(cm2)
chúc bạn học tốt
HYC-23/1/2022
Xét
DE^2 + DF^2 = 3^2 + 4^2 = 9 + 16 = 25
EF^2 = 5^2 = 5
=> DE^2 + DF^2 = EF^2
=> DEF là tam giác vuông