K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

ta kẻ đường phân giác góc A cắt BC tại F

xét tam giác AIH và tam giác AIK

có :         góc AHI =góc AKI (=90 độ)

               AI chung

               góc HAI= góc KAI(đường phân giác góc A cát BC tại F)

         =>tam giác AHI = tam giác AKI(ch-gn)

          =>IH=IK(2 cạnh tương ứng)

5 tháng 5 2022
 

Trong tam giác ABC có:

∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o

Mà BI và CI lâ các tia phân giác nên

∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )

Suy ra ∠(IBC) + ∠(ICB) = 50o

Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.

18 tháng 11 2023

a: Xét ΔAIB và ΔAIC có

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)

mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAHI=ΔAKI

=>IH=IK

c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có

IH=IK

\(\widehat{HIN}=\widehat{KIM}\)

Do đó: ΔHIN=ΔKIM

=>IN=IM và HN=KM

ΔAHI=ΔAKI

=>AH=AK

AH+HN=AN

AK+KM=AM

mà AH=AK và HN=KM

nên AN=AM

=>A nằm trên đường trung trực của NM(1)

IN=IM(cmt)

nên I nằm trên đường trung trực của MN(2)

PN=PM

=>P nằm trên đường trung trực của MN(3)

Từ (1),(2),(3) suy ra A,I,P thẳng hàng

19 tháng 11 2023

cảm ơn bạn Nguyễn Lê Phước Thịnh ạ

 

8 tháng 1 2020

Xét △AIH vuông tại H và △AIK vuông tại K

Có: HAI = KAI (gt)

      AI là cạnh chung

=> △AIH = △AIK (ch-gn)

=> AH = AK (2 cạnh tương ứng)

Xét △AHK có: AH = AK (cmt) => △AHK cân tại A => \(\widehat{AHK}=\frac{180^o-\widehat{HAK}}{2}\)(1)

Xét △AKE vuông tại K và △AHF vuông tại H

Có: EAF là góc chung

      AK = AH (cmt)

=> △AKE = △AHF (cgv-gnk)

=> AE = AF (2 cạnh tương ứng)

Xét △AEF có: AE = AF (cmt) => △AEF cân tại A => \(\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)(2)

Từ (1) và (2) \(\Rightarrow\widehat{AHK}=\widehat{AEF}\)

Mà 2 góc này nằm ở vị trí đồng vị

=> HK // EF (dhnb)

9 tháng 11 2020

Câu hỏi của Phạm Thị Hằng - Toán lớp 8 - Học toán với OnlineMath

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

1: Xét ΔCIO vuông tại Ivà ΔCHO vuông tại H có

CO chung

góc ICO=góc HCO

=>ΔCIO=ΔCHO

=>CI=CH

=>ΔCIH cân tại C

2:

Kẻ AE//BC, E thuộc IH

=>góc AEH=góc HIC=góc IHC=góc AHE

=>ΔAHE cân tại A

=>AE=AH=IK

Xét ΔAEM và ΔKIM có

góc MAE=góc MIK

AE=IK

góc AME=góc KMI

=>ΔAEM=ΔKIM

=>AM=KM

=>M là trung điểm của AK

c: Kẻ OD vuông góc AB

Xét ΔAOD vuông tại D và ΔAOH vuông tại H có

AO chung

góc OAD=góc OAH

=>ΔAOD=ΔAOH

=>AD=AH=IK

Xet ΔBOD và ΔBOI có

góc BDO=góc BIO

BO chung

góc DBO=góc IBO

=>ΔBDO=ΔBIO

=>BD=BI

BK=BI+IK=BD+AD=BA

=>ΔBKA cân tại B

=>BO vuông góc AK

Xét ΔAHO và ΔOIK có

AH=IK

OH=OI

góc AHO=góc OIK=90 độ

=>ΔAHO=ΔKIO

=>OA=OK

=>ΔOAK cân tại O

mà M là trung điểm của AK

nên OM vuông góc AK

=>B,O,M thẳng hàng

9 tháng 11 2020

Qua N kẻ đường thẳng EF song song với BC (\(E\in AB,F\in AC\)), qua E kẻ đường thẳng song song với HK cắt AC tại G

Có: EF // BC (theo cách chọn hình phụ) nên theo định lý Thales, ta có: \(\frac{EN}{BM}=\frac{AN}{AM}=\frac{NF}{MC}\)

Mà BM = MC (do AM là trung tuyến) nên NE = NF

\(\Delta\)EFG có NK // EG (theo cách chọn hình phụ), N là trung điểm của EF (cmt) nên K là trung điểm của GF hay GK = KF (*)

Xét\(\Delta\)AHI và \(\Delta\)AKI có: ^AHI = ^AKI = 900 (gt); AI là cạnh chung; ^HAI = ^KAI (gt) nên \(\Delta\)AHI = \(\Delta\)AKI (ch - gn)

=> AH = AK (hai cạnh tương ứng)  hay \(\Delta\)AHK cân tại A lại có EG // HK nên \(\Delta\)AEG cũng cân tại A => AE = AG

=> AH - AE = AK - AG => HE = GK = KF (theo (*))

Xét \(\Delta\)IHE và \(\Delta\)IKF có: IH = IK (tính chất của điểm thuộc tia phân giác); ^IHE = ^IKF ( = 900); HE = KF (cmt) => \(\Delta\)IHE = \(\Delta\)IKF (c.g.c) => IE = IF (hai cạnh tương ứng) do đó \(\Delta\)IEF cân tại I có IN là trung tuyến nên cũng là đường cao

Ta có: NI\(\perp\)EF và EF // BC (theo cách vẽ hình phụ) nên NI \(\perp\)BC (đpcm)