cho tam giác ABC có I là giao điểm của phân giác góc B và C. kẻ IK vuông góc với AB ;IH vuông góc với AC. chứng minh IH = IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta kẻ đường phân giác góc A cắt BC tại F
xét tam giác AIH và tam giác AIK
có : góc AHI =góc AKI (=90 độ)
AI chung
góc HAI= góc KAI(đường phân giác góc A cát BC tại F)
=>tam giác AHI = tam giác AKI(ch-gn)
=>IH=IK(2 cạnh tương ứng)
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
Xét △AIH vuông tại H và △AIK vuông tại K
Có: HAI = KAI (gt)
AI là cạnh chung
=> △AIH = △AIK (ch-gn)
=> AH = AK (2 cạnh tương ứng)
Xét △AHK có: AH = AK (cmt) => △AHK cân tại A => \(\widehat{AHK}=\frac{180^o-\widehat{HAK}}{2}\)(1)
Xét △AKE vuông tại K và △AHF vuông tại H
Có: EAF là góc chung
AK = AH (cmt)
=> △AKE = △AHF (cgv-gnk)
=> AE = AF (2 cạnh tương ứng)
Xét △AEF có: AE = AF (cmt) => △AEF cân tại A => \(\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{AHK}=\widehat{AEF}\)
Mà 2 góc này nằm ở vị trí đồng vị
=> HK // EF (dhnb)
Câu hỏi của Phạm Thị Hằng - Toán lớp 8 - Học toán với OnlineMath
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
1: Xét ΔCIO vuông tại Ivà ΔCHO vuông tại H có
CO chung
góc ICO=góc HCO
=>ΔCIO=ΔCHO
=>CI=CH
=>ΔCIH cân tại C
2:
Kẻ AE//BC, E thuộc IH
=>góc AEH=góc HIC=góc IHC=góc AHE
=>ΔAHE cân tại A
=>AE=AH=IK
Xét ΔAEM và ΔKIM có
góc MAE=góc MIK
AE=IK
góc AME=góc KMI
=>ΔAEM=ΔKIM
=>AM=KM
=>M là trung điểm của AK
c: Kẻ OD vuông góc AB
Xét ΔAOD vuông tại D và ΔAOH vuông tại H có
AO chung
góc OAD=góc OAH
=>ΔAOD=ΔAOH
=>AD=AH=IK
Xet ΔBOD và ΔBOI có
góc BDO=góc BIO
BO chung
góc DBO=góc IBO
=>ΔBDO=ΔBIO
=>BD=BI
BK=BI+IK=BD+AD=BA
=>ΔBKA cân tại B
=>BO vuông góc AK
Xét ΔAHO và ΔOIK có
AH=IK
OH=OI
góc AHO=góc OIK=90 độ
=>ΔAHO=ΔKIO
=>OA=OK
=>ΔOAK cân tại O
mà M là trung điểm của AK
nên OM vuông góc AK
=>B,O,M thẳng hàng
Qua N kẻ đường thẳng EF song song với BC (\(E\in AB,F\in AC\)), qua E kẻ đường thẳng song song với HK cắt AC tại G
Có: EF // BC (theo cách chọn hình phụ) nên theo định lý Thales, ta có: \(\frac{EN}{BM}=\frac{AN}{AM}=\frac{NF}{MC}\)
Mà BM = MC (do AM là trung tuyến) nên NE = NF
\(\Delta\)EFG có NK // EG (theo cách chọn hình phụ), N là trung điểm của EF (cmt) nên K là trung điểm của GF hay GK = KF (*)
Xét\(\Delta\)AHI và \(\Delta\)AKI có: ^AHI = ^AKI = 900 (gt); AI là cạnh chung; ^HAI = ^KAI (gt) nên \(\Delta\)AHI = \(\Delta\)AKI (ch - gn)
=> AH = AK (hai cạnh tương ứng) hay \(\Delta\)AHK cân tại A lại có EG // HK nên \(\Delta\)AEG cũng cân tại A => AE = AG
=> AH - AE = AK - AG => HE = GK = KF (theo (*))
Xét \(\Delta\)IHE và \(\Delta\)IKF có: IH = IK (tính chất của điểm thuộc tia phân giác); ^IHE = ^IKF ( = 900); HE = KF (cmt) => \(\Delta\)IHE = \(\Delta\)IKF (c.g.c) => IE = IF (hai cạnh tương ứng) do đó \(\Delta\)IEF cân tại I có IN là trung tuyến nên cũng là đường cao
Ta có: NI\(\perp\)EF và EF // BC (theo cách vẽ hình phụ) nên NI \(\perp\)BC (đpcm)