K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔACB vuông tại C

ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID=CD/2=8cm

Xét ΔCAB vuông tại C cso CI là đường cao

nên CI^2=IA*IB

=>8^2=6*IB

=>IB=64/6=32/3(cm)

AB=IB+IA=32/3+6=50/3(cm)

=>R=50/3:2=25/3(cm)

Xét (O) có

\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AEB}=90^0\)

Xét tứ giác BEFI có 

\(\widehat{BEF}+\widehat{FIB}=180^0\)

nên BEFI là tứ giác nội tiếp

hay B,E,F,I cùng thuộc 1 đường tròn

5 tháng 4 2022

undefined

16 tháng 8 2021

a) \(\Delta ABE\)nội tiếp đường tròn đường kính \(AB\)

\(\Rightarrow\)\(\Delta ABE\perp E\)

\(\Rightarrow\)\(AEB\lambda=90\)độ

Tứ giác\(BEFI\)nội tiếp đường tròn đường kính \(FB\)

Xét ΔIAC vuông tại I và ΔIDB vuông tại I có

góc IAC=góc IDB

=>ΔIAC đồng dạng với ΔIDB

=>IA/ID=IC/IB

=>IA*IB=ID*IC

Xét ΔACF và ΔAEC có

góc ACF=góc AEC

góc CAF chung

=>ΔACF đồng dạng với ΔAEC

=>AC/AE=AF/AC

=>AC^2=AE*AF

1: góc CND=1/2*180=90 độ

Vì góc CNE+góc CKE=180 độ

nên CNEK nội tiếp 

2: Xét ΔMNE và ΔMBC có

góc MNE=góc MBC

góc M chung

=>ΔMNE đồng dạng với ΔMBC

=>MN/MB=ME/MC

=>MN*MC=MB*ME

23 tháng 5 2023

giúp em câu c được không ạ

28 tháng 3 2021
Cho đường tròn tâm O đường kính AB, C là điểm chính giữa của cung AB. Trên cung nhỏ AC Lấy điểm M(M khác A và C). Trên tia AM lấy điểm N SAP cho An =BM. a:Cm:tam giác ACN =tam giác BCM
28 tháng 10 2023

a: PM\(\perp\)MQ

MQ\(\perp\)AB

Do đó: PM//AB

Xét tứ giác PMIO có

IO//MP

\(\widehat{PMI}=90^0\)

Do đó: PMIO là hình thang vuông

b: ΔMPQ vuông tại M

=>ΔMPQ nội tiếp đường tròn đường kính PQ

mà ΔMPQ nội tiếp (O)

nên O là trung điểm của PQ

=>P,Q,O thẳng hàng

c: ΔAOC vuông tại O

=>\(OA^2+OC^2=AC^2\)

=>\(R^2+R^2=\left(a\sqrt{2}\right)^2=2a^2\)

=>\(R=a\)

Kẻ OH\(\perp\)AC

=>d(O;AC)=OH

Xét ΔOAC vuông tại O có OH là đường cao

nên \(OH\cdot AC=OA\cdot OC\)

=>\(OH\cdot a\sqrt{2}=a\cdot a=a^2\)

=>\(OH=\dfrac{a}{\sqrt{2}}\)

Vậy: Khoảng cách từ O đến AC là \(\dfrac{a\sqrt{2}}{2}\)