cho tam giac ABC co AB<AC,M la trung diem cua BC.tren doan thang AM lay diem I bat ki(I \(\ne\)A;I\(\ne\)M)lay diem D tren tia doi cua MA sao cho MD=MI
a.chung minh tam giac MIB=MDC
b/Chung minh BI song song DC,BD song song IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Xét \(\Delta ADB\) và \(\Delta ADE\) có :
AB=AE(gt)
\(\widehat{DAB}=\widehat{DAE}\left(gt\right)\)
Cạnh AD(chung)
\(\Rightarrow\Delta ADB=\Delta ADE\left(c-g-c\right)\)
Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(BC=AB:\sin30^0=6:\dfrac{1}{2}=12\left(cm\right)\)
\(\Leftrightarrow AC=6\sqrt{3}\left(cm\right)\)
A B C G M
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
A B C 2 3 4 6 D E
a)Ta có:\(\dfrac{AE}{AC}\)=\(\dfrac{2}{4}\)=\(\dfrac{1}{2}\)
\(\dfrac{AD}{AB}\)=\(\dfrac{3}{6}\)=\(\dfrac{1}{2}\)
nên:\(\dfrac{AE}{AC}\)=\(\dfrac{AD}{AB}\)
xét ΔADE và ΔACB có: \(\dfrac{AD}{AC}\)=\(\dfrac{AE}{AB}\)(CMT)
góc A chung
vậy ΔADE ∼ ΔACB(c.g.c)
Áp dụng định lí Py-ta-go trong tam giác ABC
Ta có: 32+42=9+16=25(cm)
=>BC=\(\sqrt{25}\)=5(cm)
Vậy tam giác ABC là tam giác vuông tại A
a) Xét t/g MIB và t/g MDC có:
MB = MC (gt)
BMI = CMD ( đối đỉnh)
IM = DM (gt)
Do đó, t/g MIB = t/g MDC (c.g.c) (đpcm)
b) t/g MIB = t/g MDC (câu a)
=> MIB = MDC (2 góc tương ứng)
Mà MIB và MDC là 2 góc ở vị trí so le trong nên BI // DC (1)
Xét t/g IMC và t/g DMB có:
MC = MB (gt)
IMC = DMB ( đối đỉnh)
IM = DM (gt)
Do đó, t/g IMC = t/g DMB (c.g.c)
=> ICM = DBM (2 góc tương ứng)
Mà ICM và DBM là 2 góc ở vị trí so le trong nên IC // BD (2)
(1) và (2) là đpcm