K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017


M H I K 5 cm 6 cm Xét \(\Delta MHK\)\(\Delta MIK\) có:

MH = MI ( \(\Delta MHI\) là tam giác cân)

\(\widehat{HMK}=\widehat{KMI}\)

Chung MK

\(\Rightarrow\Delta MHK=\Delta MIK\) (c.g.c)

\(\Rightarrow HK=KI\) ( hai cạnh tương ứng)

\(\Rightarrow HK=\dfrac{6cm}{2}=3cm\)

\(\Rightarrow\widehat{MKH}=\widehat{MKI}\) ( hai góc tương ứng)

Mà 2 góc này kề bù với nhau

\(\Rightarrow\widehat{MKH}=\widehat{MKI}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow MK\perp HI\)

Xét \(\Delta MHK\) là tam giác vuông và vuông tại K

\(\Rightarrow MH^2=HK^2+KM^2\) (định lí Py- ta- go)

Thay số ta tính được MK= 4cm

29 tháng 1 2018

tôi bị bê đê con dê tôi bị tâm thần 

a: AC=căn 20^2-12^2=16cm

b: Xét ΔMKB và ΔMHC có

MK=MH

góc KMB=góc HMC

MB=MC

=>ΔMKB=ΔMHC

c: ΔABC vuông tại A có AM là trung tuyến

nên MA=MB

=>ΔAMB cân tại M

mà MD là trung tuyến

nên D là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

MH//AB

=>H là trung điểm của AC

Xét ΔCAB có

BH,AM là trung tuyến

BH cắt AM tại G

=>G là trọng tâm

=>C,G,D thẳng hàng

a: Xét ΔAMB và ΔAMC có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔAMB=ΔACM

b:

ΔABC cân tại A có AM là phân giác

nên AM vuông góc BC và M là trung điểm của BC

MB=MC=BC/2=3cm

=>AM =căn 5^2-3^2=4cm

c: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có

MB=MC
góc B=góc C

=>ΔMHB=ΔMKC

=>MH=MK

Xét ΔHMQ vuông tại H và ΔKMP vuôg tại K có

MH=MK

góc HMQ=góc KMP

=>ΔHMQ=ΔKMP

=>MQ=MP

=>ΔMQP cân tại M

20 tháng 3 2020

A B C M H I 1 2 2 1

a,Xét tam giác AIH và tam giác MHI có

IH  là cạnh chung

H2^=I1^(MI//AC)

H1^=I2^(MH//AB)

=> tam giác AIH = tam giác MHI(g.c.g)

13 tháng 9 2021

\(a,\) Vì tam giác MNK cân nên MH vừa là p/g vừa là trung tuyến và đường cao \(\Rightarrow NH=HK;MH\perp NK.hay.IH\perp NK\)

Tam giác INK có IH vừa là trung tuyến \(\left(NH=HK\right)\) và đường cao \(\left(IH\perp NK\right)\) nên là tam giác cân

\(b,\) Xét \(\Delta ANK\) và \(\Delta BKN\) có 

\(\left\{{}\begin{matrix}\widehat{MNK}=\widehat{MKN}\left(\Delta MNK.cân\right)\\\widehat{INK}=\widehat{IKN}\left(\Delta INK.cân\right)\\NK.chung\end{matrix}\right.\Rightarrow\Delta ANK=\Delta BKN\left(g.c.g\right)\)

\(\Delta ANK\)

13 tháng 9 2021

giúp mik bài này với