Cho tam giác ABC , đường cao AH . Kẻ HE vuông góc vs BC ; HF vuông góc vs AC . BF cắt EH tại M , EC cắt HF tại N . Trên BC lấy P và Q sao cho EPHN và FQHM nội tiếp . Chứng minh PN =QM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tg ABC vuông tại A nên: AC= căn(BC2 -AB2)= CĂN(10^2- 6^2) =8 cm
Có AH.BC= AB.AC
=> AH= (8.6)/10=4,8 cm
Có: AB2= BH.BC => BH=3,6 => CH=6,4
Xét ΔCHA vuông tại H có HE là đường cao
nên \(EC\cdot EA=HE^2\)
=>\(EC\cdot EA=36\)
EA+EC=AC
=>EA+EC=9
EC*EA=36 và EA+EC=9
=>EA,EC là hai nghiệm của phương trình: \(x^2-9x+36=0\)(1)
\(\text{Δ}=\left(-9\right)^2-4\cdot1\cdot36=81-144=-63< 0\)
=>Phương trình (1) vô nghiệm
Do đó: BC không có số đo
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)