K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

16 tháng 7 2016

a/ xét tam giác ABC cân tại A ta có

AH là đường phân giác(gt)

=> AH là đường trung tuyến; AH là đường cao

=>H là trung điểm của BC và AH vuông góc với BC

\(\)

b/ ta có: H là trung điểm của BC

\(\Rightarrow BH=\frac{1}{2}BC\)

\(\Rightarrow BH=6cm\)

xét tam giác ABH vuông tại H ta có

\(AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)

\(\Rightarrow AH^2=64\)


\(\Rightarrow AH=8cm\)

ta có

\(S_{ABC}=\frac{AH.BC}{2}\)

\(S_{ABC}=48cm^2\)

c/ xét tam giác MBH vuông tại M và tam giác NCH vuông tại N ta có

BH=HC(H là trung điểm của BC)

góc MBH=góc NCH (tam giác ABC vuông tại A)

=> tam giác MBH=tam giác NCH (ch-gn)

=> MH=NH (2 cạnh tuong ứng)

cmtt tam giác BGH=tam giác CNH (ch-gn)

=> QH=NH(2 cạnh tương ứng)

mà MH=NH(cmt)

nên QH=MH

=> tam giác GHM cân tại H

\(\)

a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có

AB=AC

AH chung

Do đó: ΔAHC=ΔAHB

Suy ra: \(\widehat{AHC}=\widehat{AHB}\)

b: Xét tứ giác BNCM có 

H là trung điểm của BC

H là trung điểm của NM

Do đó: BNCM là hình bình hành

Suy ra: BN//CM

hay BN//AC

15 tháng 2 2018

17 tháng 7 2018