Câu 14. Cho ∆ABC có ba góc nhọn (AB < AC) Đường cao AH. Kẻ HE 1 AB; HF perp AC : (E \in AB; F \in HC)
a) Chứng minh: Delta*AEH 5 Delta*AHR và AE. AB = A * H ^ 2
b) Đường thẳng EF cắt đường thẳng BC tại M. Chứng minh: MB .MC=MEMF Ai giúp em với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHB
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)
=>\(AE\cdot AB=AH^2\)
b: Xét ΔAFH vuông tại F và ΔAHC vuông tại H có
\(\widehat{FAH}\) chung
Do đó: ΔAFH~ΔAHC
=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)
=>\(AF\cdot AC=AH^2\)
=>\(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF~ΔACB
=>\(\widehat{AEF}=\widehat{ACB}\)
=>\(\widehat{MEB}=\widehat{MCF}\)
Xét ΔMEB và ΔMCF có
\(\widehat{MEB}=\widehat{MCF}\)
\(\widehat{EMB}\) chung
Do đó ΔMEB~ΔMCF
=>\(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)
=>\(ME\cdot MF=MB\cdot MC\)