cho tam giác ABC cân tại A. Trên cạnh BC lấy D;E sao cho BD=CE<BC:2 đường thẳng kẻ từ D vuông góc với AB cắt AB ở M đường thẳng kẻ từ E vuông góc AC cắt AC ở N . Chứng minh a) DM=EN b) EM=ĐN c) tam giác ADE cân đ) Gọi I là trung điểm của BC .Chứng tỏ rằng AI,MD,NE cũng đi qua 1 điểm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Xét tam giác ABD và tam giác ACE có:
AB = AC (do tam giác ABC cân)
góc ABC = góc ACB (do tam giác ABC cân)
BD = CE (GT)
Vậy tam giác ABD = tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> tam giác ADE cân tại A
Ta có: \(\widehat{BEO}=\widehat{C}\)
mà \(\widehat{C}=\widehat{B}\)
nên \(\widehat{BEO}=\widehat{B}\)
Xét tứ giác BDOE có OD//BE
nên BDOE là hình thang
mà \(\widehat{BEO}=\widehat{B}\)
nên BDOE là hình thang cân
Vì AD=AE.
=>tg ADE cân tại A.
Vậy, suy ra: góc ADE= góc ABC(vì cả 2 tg đều cân tại A nên các góc ở đáy bằng nhau).
Mà góc ADE và góc ABC ở vi trí đồng vị.
=>DE // BC.
a, Xét tam giác ABE và tam giác ACD
AB = AC
AE = AD
^A _ chung
Vậy tam giác ABE = tam giác ACD (c.g.c)
=> BE = CD ( 2 cạnh tương ứng )
=> ^ABE = ^ACD ( 2 góc tương ứng )
b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC
Xét tam giác KBD và tam giác KCE có
^BKD = ^CKE ( đối đỉnh )
^KBD = ^KCE (cmt)
BD = CE (cmt)
Vậy tam giác KBD = tam giác KCE (g.c.g)
c, Xét tam giác ABH và tam giác ACH có
^B = ^C
AH _ chung
AB = AC
Vậy tam giác ABH = tam giác ACH ( c.g.c )
=> ^BAH = ^CAH ( 2 góc tương ứng )
=> AH là đường phân giác
hay AK là đường phân giác
d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao
hay AK vuông BC
e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)
a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{MBD}=\widehat{NCE}\)
Do đó: ΔMBD=ΔNCE
SUy ra: DM=EN
b: Xét ΔMBE và ΔNCD có
MB=NC
\(\widehat{MBE}=\widehat{NCD}\)
BE=CD
Do đo: ΔMBE=ΔNCD
Suy ra: EM=DN
c: Xét ΔADB và ΔAEC có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đo: ΔADB=ΔAEC
Suy ra: AD=AE
hay ΔADE cân tại A