K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Theo chứng minh ở câu a. △ AEB đồng dạng  △ ABC theo tỉ số k = 1/2 nên dễ thấy BE = 1/2 BC hay BE = BM

Suy ra: ΔBEM cân tại B.

Xét tam giác EBC có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: OB là đường phân giác góc EBC

BO là đường phân giác góc ở đỉnh của tam giác cân BEM nên BO vuông góc với cạnh đáy EM (đpcm).

21 tháng 10 2021

1) Vì ABCD là hình bình hành

=> OA=OC, OB=OD

Ta có: OM=OA/2

           OP=OC/2

Mà OA=OC => OM=OP

Cm tương tự ta được OQ=ON

Tứ giác MNPQ có OM=OP. OQ=ON

=> MNPQ là hình bình hành

2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)

Suy ra tứ giác ANCQ là hình bình hành

Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)

Suy ra tứ giác BPDM là hình bình hành

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAM và ΔOCP có

góc OAM=góc OCP

OA=OC

góc AOM=góc COP

=>ΔOAM=ΔOCP

=>OM=OP

=>O là trung điểm của MP

Xét ΔOQD và ΔONB có

góc ODQ=góc OBN

OD=OB

góc QOD=góc NOB

=>ΔOQD=ΔONB

=>OQ=ON

=>O là trung điểm của QN

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

=>MNPQ là hbh

27 tháng 10 2021

b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có 

AD=CB

\(\widehat{ADK}=\widehat{CBH}\)

Do đó: ΔADK=ΔCBH

Suy ra: DK=BH

Xét tứ giác BKDH có 

DK//BH

DK=BH

Do đó: BKDH là hình bình hành

27 tháng 10 2021

Biết hết không ạ em đang cần gấp.

 

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

2 tháng 11 2022

  a) hình bình hành ABCD có:

O là giao điểm của AC và BD

=> O là trung điểm của AC và BD

xét tam giác AOM và tam giác NOC có:

AO= CO

góc A² = góc C¹ (so le trong)

góc O¹=góc O² (đối đỉnh)

=> tam giác AOM=tam giác CON(g.c.g) => OM =ON

=> M đối xứng với N qua O

b) tam giác AOM= tam giác CON nên

=> AM= CN, AM // CN

=> tứ giác AMNC là hình bình hành loading...