cho hình thang ABCD có AB//CD. Trên tia đối của BA lấy E sao cho BE=CD. gọi I;K lần lượt là giao điểm của AC với DB;DE.(như hình vẽ)
C/M:\(\frac{AK}{KC}=\frac{AC}{CI}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ B kẻ B F vuông góc vs CD( F thuộc CD) và từ A kẻ A G vuông góc vs CD(G thuộc Cd)
xét tg ADG và tg BCF có: AGD =BFC=90(cách vẽ), AD=BC, ADG=BCF (do tg ABCD là hthang cân)
=> tg ADG=tg BCF(ch-gn)=>DG=FC
xét tg ABFG có: AB//GF(vì AB//CD, G và F thuộc CD) và AG//BH (cùng // DC)=>tg ABFG là hbh=.AB=GF=4cm
ta có: DC=DG+GF+FC
<=>10=2.FC+4
<=>FC=3cm hay DG=3cm(vì DG=FC)
xet tg BCF vuông tại F(cách vẽ) có: BF^2 +FC^2 = BC^2( đl py-ta-go)
<=>BF^2=BC^2-FC^2=5^2 -3^2=16<=>BF=4(vì BF>0)
xét tg CHE có: BF//EH(cùng vuông góc vs CD)=>DF/DH=DB/DE(đl ta-lét)
<=>(DG+GF)/(DC+CH)=DB/(DB+BE)
<=>(3+4)/(10+HC)=DB/2DB (vì DB=BE)
<=>7/(10+HC)=1/2 =>10+HC=7.2=14=>HC=14-10=4cm
vậy độ dài cạnh HC là 4 cm
+) Vì ABCD là hình thang
\(\Rightarrow AB//CD\)
\(\Rightarrow AB//DE\)
\(\Rightarrow\widehat{A}_1=\widehat{E}_1\)( so le trong)
và \(\widehat{D_1=\widehat{B_1}}\)( slt )
Xét \(\Delta AIB\)và \(\Delta EIB\)có :
\(\widehat{A}_1=\widehat{E_1}\)( cmt)
\(BI:\)Cạnh chung
\(\widehat{B_1}=\widehat{D_1}\)(cmt )
Do đó : \(\Delta AIB=\Delta EIB\left(g.c.g\right)\)
\(\Rightarrow IA=IB\)( cặp cạnh tương ứng ) (*)
+) Vì AB // CD ( GT )
=> AB // EC
=> ABCE là hình thang
Xét \(\Delta BEC\)và \(\Delta BEA\)có :
\(\widehat{E_2}=\widehat{B_{1,2}}\)( soletrong)
\(BE:\)cạnh chung
\(\widehat{E_3}=\widehat{B_3}\)(sl)
Do đó : \(\Delta BEC=\Delta BEA\left(g.c.g\right)\)
\(\Rightarrow BC=BA\)( 2 cạn tương ứng ) (1)
Mà \(BC=BE\)( GT ) (2)
từ (1) và (2)
\(\Rightarrow BA=BE\)
\(\Rightarrow\Delta ABE\)Cân
Xét \(\Delta\)cân \(ABE\)có :
\(IA=IE\)( chứng minh trên ) (1)
\(BI\perp AE\)( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao ) (2)
Từ (1) và (2)
=> Hai điểm A và E đối xứng với nhau qua I ( đpcm)
Vì AB//CD (gt) -> \(\widehat{ABD}=\widehat{BDE}\) ( 2 góc so le trong )
Xét \(\Delta\)ABI và \(\Delta\)EDI có:
\(\widehat{ABD}=\widehat{BDE}\left(cmt\right)\)
DI=IB (I là trung điểm của BD)
\(\widehat{AIB}=\widehat{DIE}\) ( 2 góc đối đỉnh )
=> \(\Delta\)ABI = \(\Delta\)EDI ( g.c.g )
=> AB = DE ( 2 cạnh tương ứng ) (1)
Mà AB//DE ( AB//DC, E thuộc DC ) (2)
Từ (1) và (2) -> ABED là hình bình hành
-> AE cắt DB tại trung điểm mỗi đường ( tính chất hình bình hành ) mà I là trung điểm của BD
-> I là trung điểm AE
Chúc bạn học tốt!!!
a: Xét tứ giác ABED có
\(\widehat{A}=\widehat{D}=\widehat{BED}\)
Do đó: ABED là hình chữ nhật
help me