Hình thang ABCD (AB // CD) có B-C=60; D=4/5.A. Tính các góc của hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH và đường cao BK . ⇒AB=HK=1cm
Nên ta có : DH+CK=4 (1)
Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :
\(\left\{{}\begin{matrix}AH=tan60\cdot DH\\BK=tan30\cdot CK\end{matrix}\right.\)\(\Rightarrow tan60\cdot DH=tan30\cdot CK\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình :
\(\left\{{}\begin{matrix}DK+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)
\(\Rightarrow AH=tan60\cdot DH=\sqrt{3}\cdot1=\sqrt{3}\left(cm\right)\)
\(\Rightarrow S_{ABCD}=12\cdot AH\cdot\left(AB+CD\right)=12\cdot\sqrt{3}\cdot\left(1+5\right)=3\sqrt{3}\left(cm^2\right)\)
Tick hộ nha bạn 😘
Hinh thang ABCD ( AB // CD ) nên góc B + góc C = 180 độ (1) ( hai góc trong cùng phái bù nhau )
ta lại có : góc B - góc C = 60 độ ( 2).
Cộng vế với vế (1) và (2) ta được : 2B = 240 độ => B = 120 độ => C = 60 độ
tương tự: Góc A + góc D = 180 (3) độ .
mà góc D = 4/5 góc A . thế vào (3) ta được: 9/5A = 180 độ => A = 100 độ => D = 80 độ
ABCD là hình thang cân
=>góc ADC=góc DCB=180-60=120 độ
AB//CD
=>góc KCB=góc CBA=60 độ
Xét tứ giác ABKH có
KH//AB
AH//BK
Do đó: ABKH là hình bình hành
=>AB=KH=8cm
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc ADH=góc BCK
Do đó: ΔAHD=ΔBKC
=>HD=KC=2cm
HD+DC+CK=HK
=>2+2+DC=8
=>DC=4(cm)
A B C D O
Gọi O là trung điểm của CD.
Hình thang ABCD có ^C=^D=600 => ABCD là hình thang cân => AD=BC.
Mà CD=2AD => CD=2BC.
Do O là trung điểm CD => AD=OD=OC=BC (1)
Xét tam giác AOD: ^D=600; AD=OD => Tam giác AOD đều => AD=DO=AO (2)
Tương tự: Tam giác BOC đều => BC=OC=BO (3)
Từ (1); (2) và (3) => OA=OB=OC=OD => 4 điểm A,B,C,D cùng nằm trên đường tròn tâm O (đpcm)