Cho \\(\Delta ABC\) có các trung tuyến AM;BN;CP cắt nhau tại trọng tâm G. Trên tia AM lấy D sao cho G là trung điểm của AD.
a/ C.m các cạnh của BGD= 2/3 các trung tuyến của \(\Delta\)ABC
b/ C.m các trung tuyến của \(\Delta\)BGD=1/2 các cạnh của tam giác ABC
c/ Nêu cách dựng tam giác ABC khi biết độ dài 3 đường trung tuyến AM;BN;CP
Hình tự vẽ
a) Ta có :
AG = GD . Mà GM = \(\frac{1}{2}\) AG
=> GD = \(\frac{1}{2}\) AG
Do AG = \(\frac{1}{3}\) AM
=> GD = \(\frac{2}{3}\) AM (*)
Xét tứ giác GBDC ta có:
BM = MC ( gt ) (1)
GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)
Từ (1)(2) => Tứ giác GBDC là hình bình hành
=> GC// và =BD ; BG // và =DC
Xét tam giác ABD ta có:
AP = P B ( gt ) ( 3)
AG = GD ( gt ) (4)
Từ (3)(4) => PG là đường trung bình của tam giác ABD
=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC
Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)
Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )
=> NG=\(\frac{2}{3}\)BN (***)
Từ (*)(**)(***) => Đpcm
b) Xét tam giác DBA ta có :
AG = GD ( gt )
BF=FD ( gt )
=> GF là đường trung bình bình của tam giác DAB
=> GF = \(\frac{1}{2}\)AB( 5)
Ta có : DC = GB ( cm ở câu a )
Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)
=> EN = BG => EN= DC
Mà BG// DC ( cm ở câu a)
=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )
=> DE=NC
Mà NC =\(\frac{1}{2}\)AC (6)
=> AN= NC
Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)
Từ (5)(6)(7) => Đpcm