cho tam giác ABC vuông tại A có M,N lần lượt là trung điểm của AB,AC .Biết BN=2sina;CM=2cosa với 0<a<90
tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AECM có
F là trung điểm của AC
F là trung điểm của EM
Do đó: AECM là hình bình hành
=>AM//CE
=>AM//CB
Xét tứ giác NMBE có
F là trung điểm chung của NB và ME
=>NMBE là hình bình hành
=>NM//BE
=>NM//BC
AM//BC
NM//BC
mà AM,NM có điểm chung là M
nên M,N,A thẳng hàng
Xét tứ giác
minh bt đáp án là 26 nhưng k bt cách làm. 15 sai nhé bạn
Xét ΔABC có M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{1}{2}BC\)
Xét ΔOMN và ΔOCB có
\(\widehat{OMN}=\widehat{OCB}\)(hai góc so le trong, NM//BC)
\(\widehat{MON}=\widehat{COB}\)(hai góc đối đỉnh)
Do đó: ΔOMN~ΔOCB
=>\(\dfrac{MN}{CB}=\dfrac{ON}{OB}=\dfrac{1}{2}\)
Ta có \(AN=\dfrac{1}{2}AC\)
=>\(S_{ABN}=\dfrac{1}{2}\cdot S_{ABC}=66\left(m^2\right)\)
Ta có: M là trung điểm của AB
=>\(S_{BMN}=\dfrac{1}{2}\cdot S_{BNA}=\dfrac{1}{2}\cdot66=33\left(cm^2\right)\)
\(\dfrac{ON}{OB}=\dfrac{1}{2}\)
=>\(\dfrac{OB}{ON}=2\)
=>\(\dfrac{OB+ON}{ON}=2+1=3\)
=>\(\dfrac{BN}{ON}=3\)
=>\(\dfrac{ON}{BN}=\dfrac{1}{3}\)
=>\(S_{MON}=\dfrac{1}{2}\cdot S_{MNB}=\dfrac{1}{2}\cdot33=16,5\left(cm^2\right)\)
a: Xét ΔCAB có
N là trung điểm của AB
NP//AB
=>P là trung điểm của AC
Xét ΔCAB có
N là trung điểm của BC
NM//AC
=>M là trung điểm của AB
b: Xét tứ giác ANCE có
P là trung điểm chung của AC và NE
AC vuông góc NE
=>ANCE là hình thoi
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=\dfrac{7}{2}=3.5\left(cm\right)\)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(NM=\dfrac{BC}{2}=\dfrac{7}{2}=3.5\left(cm\right)\)
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
Ta có:
M là trung điểm AB
N là trung điểm AC
⇒ MN là đường trung bình cùa tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}BC\Rightarrow BC=2\cdot MN=2\cdot5=10\left(cm\right)\)
Xét tam giác ABC vuông tại A áp dụng định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=8\left(cm\right)\)