cho tam giác ABC đường trung tuyến AM , đường cao AH.biết BM=1,234;CM=2,345.CMR tam giác ABC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tính được \(\widehat{HMC}=30^0\)
Tam giác MHC vuông tại H (gt) có: \(\widehat{HMC}=30^0\) nên HC = 1/2 MC
E là trung điểm của BM (gt) \(\Rightarrow EB=EM=\frac{1}{2}BM\)
AM là đường trung tuyến (gt) nên M là trung điểm của BC và MB = MC
Từ 3 điêu trên, ta được HC = EB = EM . (1)
Bạn chứng minh được \(\Delta AEB=\Delta BHC\left(c.g.c\right)\Rightarrow AE=BH\) (2)
Từ (1) và (2) \(\Rightarrow AE.EM=BH.HC\left(đpcm\right)\)
Chúc bạn học tốt.
Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:
$144=AH^2=BH.HC(1)$
$BH+CH=BC=25(2)$
Từ $(1); (2)$ áp dụng định lý Viet đảo thì $BH, CH$ là nghiệm của pt: $x^2-25x+144=0$
$\Rightarrow BH, CH= (16,9)$
Mà $AB< AC$ nên $BH< CH$
$\Rightarrow BH=9; CH=16$ (cm)
$AB=\sqrt{BH^2+AH^2}=\sqrt{9^2+12^2}=15$ (cm)
$AC=\sqrt{CH^2+AH^2}=\sqrt{16^2+12^2}=20$ (cm)
b.
$AM=\frac{BC}{2}=\frac{25}{2}$ (cm)
$\sin \widehat{AMH}=\frac{AH}{AM}=\frac{24}{25}$
$\Rightarrow \widehat{AMH}\approx 74^0$
c.
$HM=\sqrt{AM^2-AH^2}=\sqrt{(\frac{25}{2})^2-12^2}=3,5$ (cm)
$S_{AHM}=\frac{AH.HM}{2}=\frac{12.3,5}{2}=21$ (cm2)
a: Đặt BH=x; CH=y(x<y)
Theo đề, ta có: xy=12^2=144 và x+y=48
=>x,y là các nghiệm của phương trình:
x^2-48x+144=0
=>x=24-12 căn 3 hoặc x=24+12căn 3
=>BH=24-12căn 3 và CH=24+12căn 3
\(AB=\sqrt{\left(24-12\sqrt{3}\right)\cdot48}\simeq12,42\left(cm\right)\)
\(AC=\sqrt{\left(24+12\sqrt{3}\right)\cdot48}\simeq46,36\left(cm\right)\)
b: AM=BC/2=24cm
sin AMH=AH/AM=12/24=1/2
=>góc AMH=30 độ
Xét ΔABC có
BM,CN lần lượt là các đường trung tuyến
BM cắt CN tại I
=>I là trọng tâm
=>AI là đường trung tuyến của ΔACB
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI vuông góc CB
=>AI là trung trực của BC
bài 2:
ta có : điểm M nằm trên đường trung trực của BC nên M sẽ cách đều B và C => MB=MC
Ta có: AC=AM+MC
=> AC=AM+MB
Bài 2: Tam giác BNC cân tại N vì đường thẳng hạ từ N xuống vuong góc cạnh đối diện cũng là trung tuyến nên BN=NC
=> AN+BN=AN+NC=AC