K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: AH^2=HB*HC

=>AH/HB=HC/HA

=>ΔAHC đồng dạng với ΔBHA

=>góc HAC=góc HBA

=>góc HAC+góc HAB=90 độ

=>góc BAC=90 độ

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: AH^2=HB*HC

=>AH/HB=HC/HA

=>ΔAHC đồng dạng với ΔBHA

=>góc HAC=góc HBA

=>góc HAC+góc HAB=90 độ

=>góc BAC=90 độ

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

7 tháng 10 2016

A B C H E F

7 tháng 10 2016

Xét ΔABH vuông tại H(gt)

=> \(AH^2=AE\cdot AB\)   (1)

Xét ΔAHC vuông tại C(gt)

=>\(AH^2=AF\cdot AC\)    (2)

Từ (1)(2) suy ra:

AE.AB=AF.AC

b) Xét ΔABH vuông tại H(gt)

=> \(AB^2=AH^2+BH^2=3^2+4^2=9+16=25\)

=>AB=25

Áp dụng hệ thức ta có:

\(AH^2=AE\cdot AB\)

=> \(AE=\frac{AH^2}{AB}=\frac{4^2}{5}=\frac{16}{5}\)

Có: AB=AE+BE

=>BE=AB-AE= \(5-\frac{16}{5}=\frac{9}{5}\)

 

 

20 tháng 3 2022

Xét tam giác AEH và tam giác AHB, có:

\(\widehat{AHB}=\widehat{AEH}=90^0\)

\(\widehat{A}:chung\)

Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(HB\cdot HC=AH^2\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=HA^2\left(2\right)\)

Từ (1) và (2) suy ra \(HB\cdot HC=AE\cdot AB\)

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

Suy ra: AD=MN

19 tháng 10 2021

a: Ta có: BH+CH=BC

nên BC=13(cm)

Xét ΔABC vuông tại A có AH là đường cao 

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)