Cho tam giác ABC vuông tại A, có AH là đường cao. Biết BH = 7,2cm; CH = 12,8cm. Tính AB, AC, AH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng định lí pytago vào tg vuông ABC
=>AB2+AC2=BC2
=>BC=√7,22+9,62
=>BC=12cm
áp dụng định lí 1
=>AC2=HC.BC
=>HC=AC2/BC=9,62/12=7,68cm
lại có HB+HC=BC
=>HC=BC-HC=12-7,68=4,32cm
Cảm ơn nha mấy hôm nay hỏi ko có ai trả lời may là có bạn
Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
BA^2=HB*HC
=>HB(HB+10,8)=7,2^2
=>HB^2+10,8HB-7,2^2=0
=>HB=3,6cm
=>BC=14,4cm
\(AC=\sqrt{14.4^2-7.2^2}=\dfrac{36}{5}\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{36\sqrt{3}}{5}\cdot7.2\simeq44,89\left(cm^2\right)\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
AC^2=HC*CB
=>HC(HC+7,2)=16^2=256
=>HC^2+7,2*HC-256=0
=>HC=12,8cm
AH=căn 12,8*7,2=9,6cm
BC=12,8+7,2=20cm
AB=căn 7,2*20=12(cm)
AC=căn 12,8*20=16(cm)
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
ΔAHB vuông tại H
=>AB^2=AH^2+HB^2
=>AB=3*căn 5(cm)
ΔAHB vuông tại H có sin B=AH/AB=6/3*căn 5=2/căn 5
Lời giải:
Áp dụng định lý Pitago:
$AB=\sqrt{BH^2+AH^2}=\sqrt{6^2+3^2}=3\sqrt{5}$ (cm)
Xét tam giác vuông $ABH$ vuông tại $H$ ta có:
$\sin B =\frac{AH}{AB}=\frac{6}{3\sqrt{5}}=\frac{2}{\sqrt{5}}$
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow AH=\sqrt{BH.HC}=\sqrt{7,2.12,8}=9,6\left(cm\right)\)
Ta có: \(BC=BH+HC=7,2+12,8=20\left(cm\right)\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=HC.BC\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH.BC}=\sqrt{7,2.20}=12\left(cm\right)\\AC=\sqrt{CH.BC}=\sqrt{12,8.20}=16\left(cm\right)\end{matrix}\right.\)