K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

a, Xét ∆ABC vuông tại A có: B + C = 90o

                                        => 30o + C = 90o

                                        => C = 60o

b, Vì CD là tia phân giác của C 

=> ACD = DCB = ACB/2 = 60o/2 = 30o

Xét ∆ACB và ∆MCD 

Có: AD: cạnh chung (gt)

      ACD = DCM (vì CD là tia p/g của C)

      CA = CM (gt)

=> ∆ACB = ∆MCD (c.g.c)

c, XY vuông góc CA => KCA = 90o

Vì AK // CD => CKA = CDA (2 góc so le trong)

Xét ∆CAK vuông tại C và ∆ADC vuông tại A

Có: CA: cạnh chung

     CKA = CDA (cmt)

=> ∆CAK = ∆ADC (cgv-gn)

=> AK = DC (2 cạnh tương ứng) 

d, Vì ∆CAK = ∆ADC (câu c)

=> KAC = ACD (2 góc tương ứng)

Mà ACD = 30o

=> KAC = 30o

Xét ∆KAC vuông tại C có: KAC + AKC = 90o

                                      => 30o + AKC = 90o

                                      => AKC = 60o

22 tháng 8 2019

quên vẽ hình :( đường thẳng xy tự điền chữ vào cái đường thẳng trên cùng nhé :(( srr vì quên

K A C B D M

29 tháng 6 2021

Các bạn giúp mik nha!!!

29 tháng 6 2021

mik chịu thui hihi

11 tháng 7 2017

A C B D M K x y mình vẽ hình rồi, còn phần chứng minh làm như bạn Trần Hoàng Việt nha!!

a) Ta có : A=900 ; B=300

=> C=180-A-B=180-90-30=60

b) Xét tam giác ACD và MCD ta có :

 CD chung (1)

CM=CA (gt)(2)

góc ACD=góc DCM (gt) (3)

Từ (1)(2)(3) =>\(\Delta\)ACD=\(\Delta\)MCD (c.g.c)

c) Ta có :AK//CD; CK//AD => tứ giác ADCK là hình bình hành 

                                       =>AK=CD (cặp cạnh tương ứng )

d)Ta có : \(\widehat{BDC}\)=180-30-60:2=1200

\(\widehat{CPA}\)=180-120=60

Do  ADCK là hình bình hành nên \(\widehat{CPA}\)=\(\widehat{AKC}\)=\(60^0\)

11 tháng 12 2021

a: \(\widehat{C}=60^0\)

21 tháng 5 2018

hình tự vẽ bn nha                                                                                                                                                                               a) ta có:tam giác abc vuông tại a =>  bac = 90                                                                                                                                xét tam giác abc có: abc + acb + cab = 180(t/c)                                                                                                                                      mà bac = 90(cmt)     ;     acb = 36(gt)                                                                                                                                                => 90 +36 + abc = 180                                                                                                                                                                           126 + abc = 180                                                                                                                                                                                abc= 54                                                                                                                                                                               

b) ta có: abd = ebd ( vì bd là phân giác của abc)                                                                                                                                 xét tam giác abd và tam giác ebd có:  ba=be(gt)      ;    abd=ebd(cmt)      :     chung cạnh bd                                                             => tam giác abd = tam giác ebd ( c.g.c) (đpcm)                                                                                                                          

c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b                                                                                                      tam giác abc vuông tại a(gt) => ab vuông góc với ac                                                                                                                        ta có: xy vuông góc với ab (gt)                                                                                                                                                                ab vuông góc với ac(cmt)                                                                                                                                                          => xy song song với ac(t/c)                                                                                                                                                          => bak = abd ( so le trong)                                                                                                                                                         xét tam giác abk vuông tại b và tam giác bad vuông tại a có:  bak=abd(cmt)          ;     chung cạnh ba                                                => tam giác abk= tam giác abd ( cgv-gnk)                                                                                                                                        => ak=bd(2 cạnh tương ứng)                                                                                                                                                      

21 tháng 5 2018

umk mk cảm ơn nhưng có hơi lỗi :(

9 tháng 12 2016

Kí hiệu tam giác là t/g nhé

a) t/g ABC vuông tại A có: ACB + ABC = 90o

=> 36o + ABC = 90o

=> ABC = 90o - 36o = 54o

b) Xét t/g ABD và t/g EBD có:

AB = BE (gt)

ABD = EBD ( vì BD là phân giác của ABE)

BD là cạnh chung

Do đó, t/g ABD = t/g EBD (c.g.c) (đpcm)

c) Xét t/g ABD vuông tại A và t/g BAK vuông tại B có:

ABD = BAK (so le trong)

AB là cạnh chung

Do đó, t/g ABD = t/g BAK ( cạnh góc vuông và góc nhọn kề)

=> BD = AK (2 cạnh tương ứng) (đpcm)

d) Dễ thấy, CA, BH, FE là 3 đường cao của t/g BCF

Do đó 3 đường này cùng đi qua 1 điểm

Mà BH và CA cắt nhau tại D

Nên EF đi qua D

=> E, D, F thẳng hàng (đpcm)

 

9 tháng 12 2016

Câu d sai, lm lại

Nối đoạn FD

t/g BAC = t/g BEF ( cạnh góc vuông và góc nhọn kề)

=> BC = BF (2 cạnh tương ứng)

t/g CBD = t/g FBD (c.g.c)

=> CD = FD (...)

t/g CDH = t/g FDH ( cạnh góc vuông và cạnh huyền)

=> CDH = FDH (...)

Có: CDH + CDE + EDB = 180o

Mà CDH = ADB ( đối đỉnh)

= FDH = EDB

Do đó, CDH + CDE + HDF = 180o

=> EDF = 180o

=> E, D, F thẳng hàng (đpcm)