Cho vuông ở A có . Tia phân giác của góc ACB cắt AB ở E. Kẻ EK vuông góc với BC ở K.
a) Chứng minh: CA = CK; CE = EB.
a) So sánh: AC và EB
b) Kẻ BD vuông góc với CE ở D. Chứng minh AC, EK, BD là ba đường thẳng đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://h.vn/hoi-dap/question/393752.html
tham khảo ở link này( mik gửi cho)
Học tốt!!!!!!!!!!!!!!!
a: góc CAE=góc BAE=60/2=30 độ
góc KEB=90-30=60 độ
góc BED=góc AEC=90-30=60 độ
=>góc KEB=góc DEB
=>EB là phân giác của góc KED
góc AEK=góc BEK
=>EK là phân giác của góc BEA
b:Đề sai rồi bạn
a: Xet ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
=>AE vuông góc CK
b: Xét ΔABC vuông tại A có cosA=AC/AB
=>AC/AB=1/2
=>AB=2AC
Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>EB=EA>AC
lx
lx hình