Cho tam giác ABC đều, phân giác BD;CE cắt nhau tại O. Chứng minh rằng :
a) BD vuông góc với AC
b) CE vuông góc với AB
c) OA=OB=OC
d) Tính số đo góc AOC
Giúp tớ với, tớ cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔABE vuông tại A có
AB chung
AD=AE
=>ΔABD=ΔABE
=>BD=BE
=>ΔBED cân tại B
mà góc BED=60 độ
nên ΔBED đều
c: góc DBC=góc DBA+góc CBA
=30+60=90 độ
=>BD vuông góc BC
b: Sửa đề: Cm EB=EC
Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
=>EB=EC
Cm: a) Xét t/giác ABH và t/giác EBH
có: \(\widehat{ABH}=\widehat{EBH}\) (gt)
BH : chung
\(\widehat{BHA}=\widehat{BHE}=90^0\) (gt)
=> t/giác ABH = t/giác EBH (g.c.g)
=> AB = EB (2 cạnh t/ứng)
=> t/giác ABE cân tại B
mà \(\widehat{B}=60^0\)
=> t/giác ABE đều
b) Ta có: t/giác ABH = t/giác EBH (cmt)
=> AH = HE (2 cạnh t/ứng)
=> H là trung điểm của AE
Xét t/giác AHD và t/giác EHD
có: AH = EH (gt)
HD : chung
\(\widehat{AHD}=\widehat{EHA}=90^0\) (gt)
=> t/giác AHD = t/giác EHD (c.g.c)
=> AD = DE (2 cạnh t/ứng)
=> t/giác ADE cân tại D
Xét \(\Delta\)BIC có: ^IBC + ^BIC + ^ICB = 180o => 2. ^IBC + 2.^BIC + 2. ^ICB = 360o (1)
Xét \(\Delta\)ABC có: ^ABC + ^BAC + ^ACB = 180o
Tính chất phân giác => 2. ^IBC + ^BAC + 2. ^ICB = 180o (2)
Lấy (1) - (2) => 2.^BIC - ^BAC = 180o
=> ^BIC = 90o + ^BAC/2 = 90o + 90o/2 = 135o
Do đó: \(\Delta\)IDE không đều bạn nên xem lại đề bài