cho tam giác ABC nhọn.MN lần lượt là trung điểm của AB và AC.Trên tia đối MN lấy D sao cho MN =ND
a, chứng minh ;CD song song MB , CD =MB
b, chứng minh MN song song BC và MN =\(\dfrac{BC}{2}\)
c, kẻ BFvuoong góc với AC. chưng minh MF =\(\dfrac{AB}{2}\)
a) Xét \(\Delta AMN\) và \(\Delta CDN\) có :
MN = ND (gt)
\(\widehat{ANM}=\widehat{CND}\) (đối đỉnh)
AF = FC (gt)
=> \(\Delta AMN\) = \(\Delta CDN\) (c.g.c) (*)
=> \(\widehat{MAN}=\widehat{DCN}\) (2 góc tương ứng)
Mà : 2 góc này ở vị trí so le trong
=> CD = MB (đpcm)
- Theo giả thuyết ta có :
\(BM=MA\)
Mà : MA = CD [từ (*)]
=> CD = MB (đpcm)
b) Ta có : \(\widehat{AMN}=\widehat{CDN}\) [từ (*)]
Mà : \(\widehat{NDC}=\widehat{MBC}\) (so le trong)
=> \(\widehat{AMN}=\widehat{MBC}\)
Mà : 2 góc này ở vị trí đồng vị
=> MN // BC (đpcm)
Xét \(\Delta ABC\) CÓ :
AM = MB (GT)
AN = NC (gt)
=> MN là đường trung bình của tam giác ABC
=> \(MN=\dfrac{BC}{2}\) (tính chất đuognừ trung bình trong tam giác)