Cho AB=6(cm).Gọi C là trung điểm của AB.
a,Tính AC;CB.
b,Lấy 2 điểm D và E trên AB sao cho AD=BE=2(cm).Tính CD;CE.
c,C có là trung điểm của DE không?Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=5/2=2,5(cm) và MN//BC
hay MNBC là hình thang
b: Xét ΔCMB và ΔAMD có
\(\widehat{BCM}=\widehat{DAM}\)
CM=AM
\(\widehat{CMB}=\widehat{AMD}\)
Do đó: ΔCMB=ΔAMD
Suy ra: MB=MD
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
a) Ta có: \(AP=BP=\dfrac{AB}{2}\)(P là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AP=BP=AN=NC
Xét ΔABN và ΔACP có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AP(cmt)
Do đó: ΔABN=ΔACP(c-g-c)
Suy ra: BN=CP(hai cạnh tương ứng)
b) Xét ΔMNC và ΔINA có
MN=IN(gt)
\(\widehat{MNC}=\widehat{INA}\)(hai góc đối đỉnh)
NC=NA(N là trung điểm của AC)
Do đó: ΔMNC=ΔINA(c-g-c)
Suy ra: MC=IA(hai cạnh tương ứng)
Xét ΔANM và ΔCNI có
AN=CN(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CNI}\)(hai góc đối đỉnh)
NM=NI(gt)
Do đó: ΔANM=ΔCNI(c-g-c)
Suy ra: AM=CI(hai cạnh tương ứng)
Ta có: ΔABC cân tại A(gt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay \(\widehat{AMC}=90^0\)(1)
Xét ΔAMC và ΔCIA có
AC chung
AM=CI(cmt)
MC=IA(cmt)
Do đó: ΔAMC=ΔCIA(c-c-c)
Suy ra: \(\widehat{AMC}=\widehat{CIA}\)(hai góc tương ứng)(2)
Từ (1) và (2) suy ra \(\widehat{AIC}=90^0\)
Vậy: \(\widehat{AIC}=90^0\)
\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\\ b,\left\{{}\begin{matrix}IN=IB\\IA=IC\\\widehat{AIN}=\widehat{BIN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta IBC=\Delta INA\left(c.g.c\right)\\ \Rightarrow\widehat{NAI}=\widehat{ICB}\\ \text{Mà 2 góc này ở vị trí SLT nên }AN\text{//}BC\)
\(c,AH=\dfrac{1}{2}AN=\dfrac{1}{2}BC\left(\Delta IBC=\Delta INA\right)=MC\\ \left\{{}\begin{matrix}AH=MC\\\widehat{HAI}=\widehat{ICM}\\AI=IC\end{matrix}\right.\Rightarrow\Delta IAH=\Delta ICM\left(c.g.c\right)\\ \Rightarrow\widehat{AIH}=\widehat{MIC}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và I,A,C thẳng hàng nên H,I,M thẳng hàng}\)
a) Xét tam giác ABC có:
M,N là trung điểm BC,AB
=> MN là đường trung bình
=> MN//AC
=> ANMC là hthang
Mà \(\widehat{NAC}=90^0\)(Tam giác ABC vuông tại A)
=> ANMC là hthang vuông
b) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét tam giác ABC có:
AM là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
a,do C là trung điểm của AB nên: AC=CB=1/2AB=3(cm)
b,CD=AC-AD=3-2=1(cm)
Ce=CB-EB=3-2=1(cm)
c,c là trung điểm của ED
**** cho mk nha!!!