1: Cho tam giác ABC có B = 100 độ vẽ BM là phân giác của góc B, M\(\in\)AC
a) tính góc ABM , CBM
b) trên tia đối của tia AC lấy E sao cho CE = 2 cm ;CA = 4 cm. Tính AE
c) Nếu CBE = 20 độ . tính ABE
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì tam giác ABC cân tại A ,mà góc A =100 độ => góc B=góc C= (180 độ -góc A) : 2 = (180 độ - 100 độ ) : 2 = 80độ : 2 = 40 độ
=>Góc ACM = 40độ -20 độ = 20độ , Góc ABM = 40độ - 10 độ =30độ
Vì CE=CB (gt) => tam giác ECB cân tại C =>Góc CBE = góc CEB = (180độ-góc ECB):2 = ( 180độ - 40độ) :2 = 140độ:2 = 70 độ
Mà góc EBM +góc MBC = góc EBC => Góc EBM + 10 độ = 70 độ => gócEBM = 70độ -10độ=60độ (1)
Xét tam giác EMC và tam giác BMC có : Cạnh MC chung , Góc ECM= góc BCM , EC = BC(gt)
=> tam giác EMC = tam giác BMC => Góc CEM = góc CBM = 10độ
Lại có : góc BEM + góc MEC = góc BEC => góc BEM + 10 độ = 70 độ => góc BEM = 70 độ - 10 độ = 60độ (2)
Từ (1) và (2) suy ra tam giác BEM đều
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
c: Xét ΔAMN có
AB/BM=AC/CN
nên MN//BC
d: Ta có: ΔAMN cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
=>AI⊥MN
mà MN//BC
nên AI⊥BC
mà AD⊥BC
và AD,AI có điểm chung là A
nên D,A,I thẳng hàng
e: Xét ΔBEC có
D là trung điểm của BC
DA//BE
Do đó: A là trung điểm của EC
a, vì Dx//BC =>GÓC xDA=ACB (so le trong ) . Mà xDA=70 độ =>góc ACB=70 độ
b,ta có : CAB +DAB=180 độ (KỀ BÙ) Mà CAB=40 độ
=>40 + DAB =180 => DAB=140
VÌ ; Ay là phân giác của góc BAD => DAy=BAy=BAD/2=140/2=70
mÀ xDA=70
=>xDA=DAy. 2 góc này ở vị trì so le trong =>Dx//Ay. Dx//BC =>Ay//BC
a: \(\widehat{ABM}=\widehat{CBM}=\dfrac{100^0}{2}=50^0\)
b: Trên tia CA, ta có: CE<CA
nên điểm E nằm giữa hai điểm C và A
=>CE+EA=CA
hay EA=2(cm)
c: \(\widehat{ABE}=100^0+20^0=120^0\)
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
a: \(\widehat{ABM}=\widehat{CBM}=\dfrac{100^0}{2}=50^0\)
b: Trên tia CA, ta có: CE<CA
nên điểm E nằm giữa hai điểm C và A
=>CE+EA=CA
hay EA=2(cm)
c: \(\widehat{ABE}=100^0+20^0=120^0\)