1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)và \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\) và x+y+z=2 hãy...
Đọc tiếp
1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)
và \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)
b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)
2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?
\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)
b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)
và x+y+z=2
hãy tính \(P=\sqrt{\left(1+X\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)
3, ba đường tròn (O,R),(O1,R1).(O2,R2) vời R<R1<R2 tiếp xúc ngoài với nhau từng đôi một đồng thời cùng tiếp xúc với một đường thẳng,gọi S, S1, S2 lần lượt là diện tích các hình tròn tâm O,O1,O2.
Chứng minh \(\frac{1}{\sqrt[4]{S}}=\frac{1}{\sqrt[4]{S1}}+\frac{1}{\sqrt[4]{S2}}\)
4,Cho đường tròn tâm O bán kính R và đường tròn tâm O' bán kính R' cắt nhau tại A Và B. TRên tia đổi của tia AB,lấy điểm C,Kẻ tiếp tuyến CD.CE với đường tròn tâm O(D,E là các tiếp điểm và E nằm trong đường tròn tâm O') đường thẳng AD.AE cắt đường tròn tâm O' lần lượt tại M,N (M và N khác A) tia DE cắt MN tại I ,chứng minh rằng
a, tam giác MIB đồng dạng với tam giác AEB
b. O'I vuông góc với MN
5, tam giác ABC Có góc A không nhọn, BC =a,CA=b,AB=c
Tìm Min của P=(1-a/b)(1-b/c)(1-c/a)
bai 1/
pt <=> x+\(\sqrt{3-x^2}\)=x\(\sqrt{3-x^2}\)<=> x=\(\sqrt{3-x^2}\)(x-1) (*)
nhan thay x=1 ko la n0 cua pt nen chia ca 2 ve cua (*) cho x-1 dc
\(\frac{x}{x-1}\)=\(\sqrt{3-x^2}\)
binh phg 2 ve va thu goc ta duoc pt x^4 - 2x^3 - x^2 + 6x - 3 = 0
<=> (x^2-3x+3)(x^2+x-1)=0
ban tu giai tiep